Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Acta Neuropathol ; 147(1): 40, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38353753

RESUMEN

The amyloid cascade hypothesis states that Aß aggregates induce pathological changes in tau, leading to neurofibrillary tangles (NFTs) and cell death. A caveat with this hypothesis is the spatio-temporal divide between plaques and NFTs. This has been addressed by the inclusion of soluble Aß and tau species in the revised amyloid cascade hypothesis. Nevertheless, despite the potential for non-plaque Aß to contribute to tau pathology, few studies have examined relative correlative strengths between total Aß, plaque Aß and intracellular Aß with tau pathology within a single tissue cohort. Employing frozen and fixed frontal cortex grey and white matter tissue from non-AD controls (Con; n = 39) and Alzheimer's disease (AD) cases (n = 21), biochemical and immunohistochemical (IHC) measures of Aß and AT-8 phosphorylated tau were assessed. Biochemical native-state dot blots from crude tissue lysates demonstrated robust correlations between total Aß and AT-8 tau, when considered as a combined cohort (Con and AD) and when as Con and AD cases, separately. In contrast, no associations between Aß plaques and AT-8 were reported when using IHC measurements in either Con or AD cases. However, when intracellular Aß was measured via the Aß specific antibody MOAB-2, a correlative relationship with AT-8 tau was reported in non-AD controls but not in AD cases. Collectively the data suggests that accumulating intracellular Aß may influence AT-8 pathology, early in AD-related neuropathological change. Despite the lower levels of phospho-tau and Aß in controls, the robust correlative relationships observed suggest a physiological association of Aß production and tau phosphorylation, which may be modified during disease. This study is supportive of a revised amyloid cascade hypothesis and demonstrates regional associative relationships between tau pathology and intracellular Aß, but not extracellular Aß plaques.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Neuropatología , Ovillos Neurofibrilares , Proteínas Amiloidogénicas , Anticuerpos , Placa Amiloide
2.
J Neural Transm (Vienna) ; 131(2): 157-164, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38032367

RESUMEN

Locus coeruleus (LC) is the main noradrenergic nucleus of the brain, and degenerates early in Parkinson's disease (PD). The objective of this study is to test whether degeneration of the LC is associated with orthostatic hypotension (OH) in PD. A total of 22 cognitively intact PD patients and 52 age-matched healthy volunteers underwent 3 T magnetic resonance (MRI) with neuromelanin-sensitive T1-weighted sequences (LC-MRI). For each subject, a template space-based LC-MRI was used to calculate LC signal intensity (LC contrast ratio-LCCR) and the estimated number of voxels (LCVOX) belonging to LC. Then, we compared the LC-MRI parameters in PD patients with OH (PDOH+) versus without OH (PDOH-) (matched for sex, age, and disease duration) using one-way analysis of variance followed by multiple comparison tests. We also tested for correlations between subject's LC-MRI features and orthostatic drop in systolic blood pressure (SBP). PDOH- and PDOH+ did not differ significantly (p > 0.05) based on demographics and clinical characteristics, except for blood pressure measurements and SCOPA-AUT cardiovascular domain (p < 0.05). LCCR and LCVOX measures were significantly lower in PD compared to HC, while no differences were observed between PDOH- and PDOH+. Additionally, no correlation was found between the LC-MRI parameters and the orthostatic drop in SBP or the clinical severity of autonomic symptoms (p > 0.05). Conversely, RBD symptom severity negatively correlated with several LC-MRI parameters. Our results failed to indicate a link between the LC-MRI features and the presence of OH in PD but confirmed a marked alteration of LC signal in PD patients.


Asunto(s)
Hidróxidos , Hipotensión Ortostática , Enfermedad de Parkinson , Humanos , Hipotensión Ortostática/diagnóstico por imagen , Hipotensión Ortostática/etiología , Locus Coeruleus/diagnóstico por imagen , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
3.
Eur J Neurol ; 30(1): 32-46, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36086917

RESUMEN

BACKGROUND AND PURPOSE: Human neuropathological studies indicate that the pontine nucleus Locus Coeruleus (LC) undergoes significant and early degeneration in Alzheimer's disease. This line of evidence alongside experimental data suggests that the LC functional/structural decay may represent a critical factor for Alzheimer's disease pathophysiological and clinical progression. In the present prospective study, we used Magnetic Resonance Imaging (MRI) with LC-sensitive sequence (LC-MRI) to investigate in vivo the LC involvement in Alzheimer's disease progression, and whether specific LC-MRI features at baseline are associated with prognosis and cognitive performance in amnestic Mild Cognitive Impairment. METHODS: LC-MRI parameters were measured at baseline by a template-based method on 3.0-T magnetic resonance images in 34 patients with Alzheimer's disease dementia, 73 patients with amnestic Mild Cognitive Impairment, and 53 cognitively intact individuals. A thorough neurological and neuropsychological assessment was performed at baseline and 2.5-year follow-up. RESULTS: In subjects with Mild Cognitive Impairment who converted to dementia (n = 32), the LC intensity and number of LC-related voxels were significantly lower than in cognitively intact individuals, resembling those observed in demented patients. Such a reduction was not detected in Mild Cognitive Impairment individuals, who remained stable at follow-up. In Mild Cognitive Impairment subjects converting to dementia, LC-MRI parameter reduction was maximal in the rostral part of the left nucleus. Structural equation modeling analysis showed that LC-MRI parameters positively correlate with cognitive performance. CONCLUSIONS: Our findings highlight a potential role of LC-MRI for predicting clinical progression in Mild Cognitive Impairment and support the key role of LC degeneration in the Alzheimer clinical continuum.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Locus Coeruleus/diagnóstico por imagen , Estudios Prospectivos , Progresión de la Enfermedad , Disfunción Cognitiva/patología , Pruebas Neuropsicológicas , Imagen por Resonancia Magnética/métodos
4.
Curr Neurol Neurosci Rep ; 23(12): 925-936, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38064152

RESUMEN

PURPOSE OF REVIEW: Performing a thorough review of magnetic resonance imaging (MRI) studies assessing locus coeruleus (LC) integrity in ageing and Alzheimer's disease (AD), and contextualizing them with current preclinical and neuropathological literature. RECENT FINDINGS: MRI successfully detected LC alterations in ageing and AD, identifying degenerative phenomena involving this nucleus even in the prodromal stages of the disorder. The degree of LC disruption was also associated with the severity of AD cortical pathology, cognitive and behavioral impairment, and the risk of clinical progression. Locus coeruleus-MRI has proved to be a useful tool to assess the integrity of the central noradrenergic system in vivo in humans. It allowed to test in patients preclinical and experimental hypothesis, thus confirming the specific and marked involvement of the LC in AD and its key pathogenetic role. Locus coeruleus-MRI-related data might represent the theoretical basis on which to start developing noradrenergic drugs to target AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/patología , Imagen por Resonancia Magnética/métodos , Envejecimiento
5.
Int J Mol Sci ; 24(6)2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36982879

RESUMEN

The aim of this article is to highlight the potential role of the locus-coeruleus-noradrenergic (LC-NA) system in neurodevelopmental disorders (NdDs). The LC is the main brain noradrenergic nucleus, key in the regulation of arousal, attention, and stress response, and its early maturation and sensitivity to perinatal damage make it an interesting target for translational research. Clinical data shows the involvement of the LC-NA system in several NdDs, suggesting a pathogenetic role in the development of such disorders. In this context, a new neuroimaging tool, LC Magnetic Resonance Imaging (MRI), has been developed to visualize the LC in vivo and assess its integrity, which could be a valuable tool for exploring morphological alterations in NdD in vivo in humans. New animal models may be used to test the contribution of the LC-NA system to the pathogenic pathways of NdD and to evaluate the efficacy of NA-targeting drugs. In this narrative review, we provide an overview of how the LC-NA system may represent a common pathophysiological and pathogenic mechanism in NdD and a reliable target for symptomatic and disease-modifying drugs. Further research is needed to fully understand the interplay between the LC-NA system and NdD.


Asunto(s)
Trastornos del Neurodesarrollo , Norepinefrina , Animales , Humanos , Norepinefrina/metabolismo , Locus Coeruleus/metabolismo , Nivel de Alerta/fisiología
6.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37175408

RESUMEN

This article discusses the potential of Zebrafish (ZF) (Danio Rerio), as a model for epilepsy research. Epilepsy is a neurological disorder affecting both children and adults, and many aspects of this disease are still poorly understood. In vivo and in vitro models derived from rodents are the most widely used for studying both epilepsy pathophysiology and novel drug treatments. However, researchers have recently obtained several valuable insights into these two fields of investigation by studying ZF. Despite the relatively simple brain structure of these animals, researchers can collect large amounts of data in a much shorter period and at lower costs compared to classical rodent models. This is particularly useful when a large number of candidate antiseizure drugs need to be screened, and ethical issues are minimized. In ZF, seizures have been induced through a variety of chemoconvulsants, primarily pentylenetetrazol (PTZ), kainic acid (KA), and pilocarpine. Furthermore, ZF can be easily genetically modified to test specific aspects of monogenic forms of human epilepsy, as well as to discover potential convulsive phenotypes in monogenic mutants. The article reports on the state-of-the-art and potential new fields of application of ZF research, including its potential role in revealing epileptogenic mechanisms, rather than merely assessing iatrogenic acute seizure modulation.


Asunto(s)
Epilepsia , Pez Cebra , Animales , Niño , Humanos , Pez Cebra/genética , Anticonvulsivantes/efectos adversos , Epilepsia/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Pentilenotetrazol/farmacología , Modelos Animales de Enfermedad
7.
J Neurochem ; 163(1): 40-52, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35950445

RESUMEN

Converging translational and clinical research strongly indicates that altered immune and inflammatory homeostasis (neuroinflammation) plays a critical pathophysiological role in Alzheimer's disease (AD), across the clinical continuum. A dualistic role of neuroinflammation may account for a complex biological phenomenon, representing a potential pharmacological target. Emerging blood-based pathophysiological biomarkers, such as cytokines (Cyt) and interleukins (ILs), have been studied as indicators of neuroinflammation in AD. However, inconsistent results have been reported probably due to a lack of standardization of assays with methodological and analytical differences. We used machine-learning and a cross-validation-based statical workflow to explore and analyze the potential impact of key biological factors, such as age, sex, and apolipoprotein-E (APOE) genotype (the major genetic risk factor for late-onset AD) on Cyt. A set of Cyt was selected based on previous literature, and we investigated any potential association in a pooled cohort of cognitively healthy, mild cognitive impairment (MCI), and AD-like dementia patients. We also performed explorative analyses to extrapolate preliminary clinical insights. We found a robust sex effect on IL12 and an APOE-related difference in IL10, with the latter being also related to the presence of advanced cognitive decline. IL1ß was the variable most significantly associated with MCI-to-dementia conversion over a 2.5 year-clinical follow-up. Although preliminary, our data support further clinical research to understand whether plasma Cyt may represent reliable and noninvasive tools serving the investigation of neuroimmune and inflammatory dynamics in AD and to foster biomarker-guided pathway-based therapeutic approaches, within the precision medicine development framework.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/genética , Apolipoproteínas E/genética , Biomarcadores , Disfunción Cognitiva/complicaciones , Citocinas , Progresión de la Enfermedad , Humanos , Interleucina-10 , Interleucina-12
8.
Expert Rev Proteomics ; 18(1): 27-48, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33545008

RESUMEN

Introduction: Tau protein misfolding and accumulation in toxic species is a critical pathophysiological process of Alzheimer's disease (AD) and other neurodegenerative disorders (NDDs). Tau biomarkers, namely cerebrospinal fluid (CSF) total-tau (t-tau), 181-phosphorylated tau (p-tau), and tau-PET tracers, have been recently embedded in the diagnostic criteria for AD. Nevertheless, the role of tau as a diagnostic and prognostic biomarker for other NDDs remains controversial.Areas covered: We performed a systematical PubMed-based review of the most recent advances in tau-related biomarkers for NDDs. We focused on papers published from 2015 to 2020 assessing the diagnostic or prognostic value of each biomarker.Expert opinion: The assessment of tau biomarkers in alternative easily accessible matrices, through the development of ultrasensitive techniques, represents the most significant perspective for AD-biomarker research. In NDDs, novel tau isoforms (e.g. p-tau217) or proteolytic fragments (e.g. N-terminal fragments) may represent candidate diagnostic and prognostic biomarkers and may help monitoring disease progression. Protein misfolding amplification assays, allowing the identification of different tau strains (e.g. 3 R- vs. 4 R-tau) in CSF, may constitute a breakthrough for the in vivo stratification of NDDs. Tau-PET may help tracking the spatial-temporal evolution of tau pathophysiology in AD but its application outside the AD-spectrum deserves further studies.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/metabolismo , Proteínas tau/análisis , Biomarcadores/análisis , Humanos
9.
J Neural Transm (Vienna) ; 128(5): 589-613, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33942174

RESUMEN

The hypothalamus and Locus Coeruleus (LC) share a variety of functions, as both of them take part in the regulation of the sleep/wake cycle and in the modulation of autonomic and homeostatic activities. Such a functional interplay takes place due to the dense and complex anatomical connections linking the two brain structures. In Alzheimer's disease (AD), the occurrence of endocrine, autonomic and sleep disturbances have been associated with the disruption of the hypothalamic network; at the same time, in this disease, the occurrence of LC degeneration is receiving growing attention for the potential roles it may have both from a pathophysiological and pathogenetic point of view. In this review, we summarize the current knowledge on the anatomical and functional connections between the LC and hypothalamus, to better understand whether the impairment of the former may be responsible for the pathological involvement of the latter, and whether the disruption of their interplay may concur to the pathophysiology of AD. Although only a few papers specifically explored this topic, intriguingly, some pre-clinical and post-mortem human studies showed that aberrant protein spreading and neuroinflammation may cause hypothalamus degeneration and that these pathological features may be linked to LC impairment. Moreover, experimental studies in rodents showed that LC plays a relevant role in modulating the hypothalamic sleep/wake cycle regulation or neuroendocrine and systemic hormones; in line with this, the degeneration of LC itself may partly explain the occurrence of hypothalamic-related symptoms in AD.


Asunto(s)
Enfermedad de Alzheimer , Hipotálamo , Locus Coeruleus , Trastornos del Sueño-Vigilia , Enfermedad de Alzheimer/patología , Encéfalo , Humanos , Hipotálamo/patología , Locus Coeruleus/patología
10.
J Neurosci Res ; 98(12): 2406-2434, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32875628

RESUMEN

Locus coeruleus (LC) is the main noradrenergic (NA) nucleus of the central nervous system. LC degenerates early during Alzheimer's disease (AD) and NA loss might concur to AD pathogenesis. Aside from neurons, LC terminals provide dense innervation of brain intraparenchymal arterioles/capillaries, and NA modulates astrocyte functions. The term neurovascular unit (NVU) defines the strict anatomical/functional interaction occurring between neurons, glial cells, and brain vessels. NVU plays a fundamental role in coupling the energy demand of activated brain regions with regional cerebral blood flow, it includes the blood-brain barrier (BBB), plays an active role in neuroinflammation, and participates also to the glymphatic system. NVU alteration is involved in AD pathophysiology through several mechanisms, mainly related to a relative oligoemia in activated brain regions and impairment of structural and functional BBB integrity, which contributes also to the intracerebral accumulation of insoluble amyloid. We review the existing data on the morphological features of LC-NA innervation of the NVU, as well as its contribution to neurovascular coupling and BBB proper functioning. After introducing the main experimental data linking LC with AD, which have repeatedly shown a key role of neuroinflammation and increased amyloid plaque formation, we discuss the potential mechanisms by which the loss of NVU modulation by LC might contribute to AD pathogenesis. Surprisingly, thus far not so many studies have tested directly these mechanisms in models of AD in which LC has been lesioned experimentally. Clarifying the interaction of LC with NVU in AD pathogenesis may disclose potential therapeutic targets for AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Barrera Hematoencefálica/fisiopatología , Locus Coeruleus/fisiología , Acoplamiento Neurovascular/fisiología , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/patología , Animales , Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/patología , Humanos , Locus Coeruleus/patología
11.
Expert Rev Proteomics ; 17(7-8): 543-559, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33028119

RESUMEN

INTRODUCTION: The quest for reliable fluid biomarkers tracking synaptic disruption is supported by the evidence of a tight association between synaptic density and cognitive performance in neurodegenerative diseases (NDD), especially Alzheimer's disease (AD). AREAS COVERED: Neurogranin (Ng) is a post-synaptic protein largely expressed in neurons involved in the memory networks. Currently, Ng measured in CSF is the most promising synaptic biomarker. Several studies show Ng elevated in AD dementia with a hippocampal phenotype as well as in MCI individuals who progress to AD. Ng concentrations are also increased in Creutzfeldt Jacob Disease where widespread and massive synaptic disintegration takes place. Ng does not discriminate Parkinson's disease from atypical parkinsonisms, nor is it altered in Huntington disease. CSF synaptosomal-associated protein 25 (SNAP-25) and synaptotagmin-1 (SYT-1) are emerging candidates. EXPERT OPINION: CSF Ng revealed a role as a diagnostic and prognostic biomarker in NDD. Ng increase seems to be very specific for typical AD phenotype, probably for a prevalent hippocampal involvement. Synaptic biomarkers may serve different context-of-use in AD and other NDD including prognosis, diagnosis, and tracking synaptic damage - a critical pathophysiological mechanism in NDD - thus representing reliable tools for a precision medicine-oriented approach to NDD.


Asunto(s)
Enfermedades Neurodegenerativas/genética , Neurogranina/genética , Proteína 25 Asociada a Sinaptosomas/genética , Sinaptotagmina I/genética , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/genética , Biomarcadores/líquido cefalorraquídeo , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/genética , Humanos , Enfermedades Neurodegenerativas/líquido cefalorraquídeo , Enfermedades Neurodegenerativas/diagnóstico , Neurogranina/líquido cefalorraquídeo , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Proteína 25 Asociada a Sinaptosomas/líquido cefalorraquídeo , Sinaptotagmina I/líquido cefalorraquídeo
12.
Curr Neurol Neurosci Rep ; 21(1): 2, 2020 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-33313963

RESUMEN

PURPOSE OF REVIEW: Locus coeruleus (LC) is the main noradrenergic nucleus of the brain, and its degeneration is considered to be key in the pathogenesis of neurodegenerative diseases. In the last 15 years,MRI has been used to assess LC in vivo, both in healthy subjects and in patients suffering from neurological disorders. In this review, we summarize the main findings of LC-MRI studies, interpreting them in light of preclinical and histopathological data, and discussing its potential role as diagnostic and experimental tool. RECENT FINDINGS: LC-MRI findings were largely in agreement with neuropathological evidences; LC signal showed to be not significantly affected during normal aging and to correlate with cognitive performances. On the contrary, a marked reduction of LC signal was observed in patients suffering from neurodegenerative disorders, with specific features. LC-MRI is a promising tool, which may be used in the future to explore LC pathophysiology as well as an early biomarker for degenerative diseases.


Asunto(s)
Locus Coeruleus , Imagen por Resonancia Magnética , Envejecimiento , Encéfalo , Humanos , Locus Coeruleus/diagnóstico por imagen , Norepinefrina
13.
Int J Mol Sci ; 21(22)2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33207731

RESUMEN

Locus Coeruleus (LC) is the main noradrenergic nucleus of the central nervous system, and its neurons widely innervate the whole brain. LC is severely degenerated both in Alzheimer's disease (AD) and in Parkinson's disease (PD), years before the onset of clinical symptoms, through mechanisms that differ among the two disorders. Several experimental studies have shown that noradrenaline modulates neuroinflammation, mainly by acting on microglia/astrocytes function. In the present review, after a brief introduction on the anatomy and physiology of LC, we provide an overview of experimental data supporting a pathogenetic role of LC degeneration in AD and PD. Then, we describe in detail experimental data, obtained in vitro and in vivo in animal models, which support a potential role of neuroinflammation in such a link, and the specific molecules (i.e., released cytokines, glial receptors, including pattern recognition receptors and others) whose expression is altered by LC degeneration and might play a key role in AD/PD pathogenesis. New imaging and biochemical tools have recently been developed in humans to estimate in vivo the integrity of LC, the degree of neuroinflammation, and pathology AD/PD biomarkers; it is auspicable that these will allow in the near future to test the existence of a link between LC-neuroinflammation and neurodegeneration directly in patients.


Asunto(s)
Enfermedad de Alzheimer , Locus Coeruleus , Trastornos Parkinsonianos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Humanos , Inflamación/metabolismo , Inflamación/patología , Inflamación/fisiopatología , Locus Coeruleus/metabolismo , Locus Coeruleus/patología , Locus Coeruleus/fisiopatología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/fisiopatología
14.
Brain Struct Funct ; 229(5): 1317-1325, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38625557

RESUMEN

The noradrenergic nucleus Locus Coeruleus (LC) is precociously involved in Alzheimer's Disease (AD) pathology, and its degeneration progresses during the course of the disease. Using Magnetic Resonance Imaging (MRI), researchers showed also in vivo in patients the disruption of LC, which can be observed both in Mild Cognitively Impaired individuals and AD demented patients. In this study, we report the results of a follow-up neuroradiological assessment, in which we evaluated the LC degeneration overtime in a group of cognitively impaired patients, submitted to MRI both at baseline and at the end of a 2.5-year follow-up. We found that a progressive LC disruption can be observed also in vivo, involving the entire nucleus and associated with clinical diagnosis. Our findings parallel neuropathological ones, which showed a continuous increase of neuronal death and volumetric atrophy within the LC with the progression of Braak's stages for neurofibrillary pathology. This supports the reliability of MRI as a tool for exploring the integrity of the central noradrenergic system in neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer , Progresión de la Enfermedad , Locus Coeruleus , Imagen por Resonancia Magnética , Humanos , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Anciano , Masculino , Femenino , Anciano de 80 o más Años , Estudios de Seguimiento , Neuroimagen/métodos , Degeneración Nerviosa/patología , Degeneración Nerviosa/diagnóstico por imagen , Atrofia/patología , Persona de Mediana Edad , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología
15.
Curr Alzheimer Res ; 20(4): 277-288, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37488756

RESUMEN

BACKGROUND: The integrity of Locus Coeruleus can be evaluated in vivo using specific Magnetic Resonance Imaging sequences. While this nucleus has been shown to be degenerated both in post-mortem and in vivo studies in Alzheimer's Disease, for other neurodegenerative dementias such as Dementia with Lewy Bodies this has only been shown ex-vivo. OBJECTIVE: To evaluate the integrity of the Locus Coeruleus through Magnetic Resonance Imaging in patients suffering from Dementia with Lewy Bodies and explore the possible differences with the Locus Coeruleus alterations occurring in Alzheimer's Dementia. METHODS: Eleven patients with Dementia with Lewy Bodies and 35 with Alzheimer's Dementia were recruited and underwent Locus Coeruleus Magnetic Resonance Imaging, along with 52 cognitively intact, age-matched controls. Images were analyzed applying an already developed template-based approach; Locus Coeruleus signal was expressed through the Locus Coeruleus Contrast Ratio parameter, and a locoregional analysis was performed. RESULTS: Both groups of patients showed significantly lower values of Locus Coeruleus Contrast Ratio when compared to controls. A different pattern of spatial involvement was found; patients affected by Dementia with Lewy bodies showed global and bilateral involvement of the Locus Coeruleus, whereas the alterations in Alzheimer's Dementia patients were more likely to be localized in the rostral part of the left nucleus. CONCLUSIONS: Magnetic Resonance Imaging successfully detects widespread Locus Coeruleus degeneration in patients suffering from Dementia with Lewy Bodies. Further studies, in larger cohorts and in earlier stages of the disease, are needed to better disclose the potential diagnostic and prognostic role of this neuroradiological tool.

16.
Neurobiol Aging ; 122: 12-21, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36463849

RESUMEN

Locus Coeruleus (LC) degeneration occurs early in Alzheimer's disease (AD) and this could affect several brain regions innervated by LC noradrenergic axon terminals, as these bear neuroprotective effects and modulate neurovascular coupling/neuronal activity. We used LC-sensitive Magnetic Resonance imaging (MRI) sequences enabling LC integrity quantification, and [18F]Fluorodeoxyglucose (FDG) PET, to investigate the association of LC-MRI changes with brain glucose metabolism in cognitively impaired patients (30 amnesticMCI and 13 demented ones). Fifteen cognitively intact age-matched controls (HCs) were submitted only to LC-MRI for comparison with patients. Voxel-wise regression analyses of [18F]FDG images were conducted using the LC-MRI parameters signal intensity (LCCR) and LC-belonging voxels (LCVOX). Both LCCR and LCVOX were significantly lower in patients compared to HCs, and were directly associated with [18F]FDG uptake in fronto-parietal cortical areas, mainly involving the left hemisphere (p < 0.001, kE > 100). These results suggest a possible association between LC degeneration and cortical hypometabolism in degenerative cognitive impairment with a prevalent left-hemispheric vulnerability, and that LC degeneration might be linked to large-scale functional network alteration in AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Locus Coeruleus/patología , Fluorodesoxiglucosa F18/metabolismo , Encéfalo/metabolismo , Neuroimagen , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética/métodos
17.
Brain Imaging Behav ; 16(3): 1077-1087, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34741273

RESUMEN

The locus coeruleus is the main noradrenergic nucleus of the brain and is often affected in neurodegenerative diseases. Recently, magnetic resonance imaging with specific T1-weighted sequences for neuromelanin has been used to evaluate locus coeruleus integrity in patients with these conditions. In some of these studies, abnormalities in locus coeruleus signal have also been found in healthy controls and related to ageing. However, this would be at variance with recent post-mortem studies showing that the nucleus is not affected during normal ageing. The present study aimed at evaluating locus coeruleus features in a well-defined cohort of cognitively healthy subjects who remained cognitively intact on a one-year follow-up. An ad-hoc semiautomatic analysis of locus coeruleus magnetic resonance was applied. Sixty-two cognitively intact subjects aged 60-80 years, without significant comorbidities, underwent 3 T magnetic resonance with specific sequences for locus coeruleus. A semi-automatic tool was used to estimate the number of voxels belonging to locus coeruleus and its intensity was obtained for each subject. Each subject underwent extensive neuropsychological testing at baseline and 12 months after magnetic resonance scan. Based on neuropsychological testing 53 subjects were cognitively normal at baseline and follow up. No significant age-related differences in locus coeruleus parameters were found in this cohort. In line with recent post-mortem studies, our in vivo study confirms that locus coeruleus magnetic resonance features are not statistically significantly affected by age between 60 and 80 years, the age range usually evaluated in studies on neurodegenerative diseases. A significant alteration of locus coeruleus features in a cognitively intact elderly subject might be an early sign of pathology.


Asunto(s)
Locus Coeruleus , Enfermedades Neurodegenerativas , Anciano , Encéfalo/diagnóstico por imagen , Humanos , Locus Coeruleus/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Enfermedades Neurodegenerativas/patología
18.
Expert Rev Neurother ; 21(9): 949-967, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34365867

RESUMEN

INTRODUCTION: The clinical validation and qualification of biomarkers reflecting the complex pathophysiology of neurodegenerative diseases (NDDs) is a fundamental challenge for current drug discovery and development and next-generation clinical practice. Novel ultrasensitive detection techniques and protein misfolding amplification assays hold the potential to optimize and accelerate this process. AREAS COVERED: Here we perform a PubMed-based state of the art review and perspective report on blood-based ultrasensitive detection techniques and protein misfolding amplification assays for biomarkers discovery and development in NDDs. EXPERT OPINION: Ultrasensitive assays represent innovative solutions for blood-based assessments during the entire Alzheimer's disease (AD) biological and clinical continuum, for contexts of use (COU) such as prediction, detection, early diagnosis, and prognosis of AD. Moreover, cerebrospinal fluid (CSF)-based misfolding amplification assays show encouraging performance in detecting α-synucleinopathies in prodromal or at-high-risk individuals and may serve as tools for patients' stratification by the presence of α-synuclein pathology. Further clinical research will help overcome current methodological limitations, also through exploring multiple accessible bodily matrices. Eventually, integrative longitudinal studies will support precise definitions for appropriate COU across NDDs.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Biomarcadores , Diagnóstico Precoz , Humanos , Enfermedades Neurodegenerativas/diagnóstico , alfa-Sinucleína
19.
Neurotox Res ; 38(2): 249-265, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32319018

RESUMEN

Seizures originating from limbic structures, especially when prolonged for several minutes/hours up to status epilepticus (SE), can cause specific neurodegenerative phenomena in limbic and subcortical structures. The cholinergic nuclei belonging to the basal forebrain (BF) (namely, medial septal nucleus (MSN), diagonal band of Broca (DBB), and nucleus basalis of Meynert (NBM)) belong to the limbic system, while playing a pivotal role in cognition and sleep-waking cycle. Given the strong interconnections linking these limbic nuclei with limbic cortical structures, a persistent effect of SE originating from limbic structures on cBF morphology is plausible. Nonetheless, only a few experimental studies have addressed this issue. In this review, we describe available data and discuss their significance in the scenario of seizure-induced brain damage. In detail, the manuscript moves from a recent study in a model of focally induced limbic SE, in which the pure effects of seizure spreading through the natural anatomical pathways towards the cholinergic nuclei of BF were tracked by neuronal degeneration. In this experimental setting, a loss of cholinergic neurons was measured in all BF nuclei, to various extents depending on the specific nucleus. These findings are discussed in the light of the effects on the very same nuclei following SE induced by systemic injections of kainate or pilocarpine. The various effects including discrepancies among different studies are discussed. Potential implications for human diseases are included.


Asunto(s)
Prosencéfalo Basal/fisiopatología , Núcleo Basal de Meynert/fisiopatología , Neuronas Colinérgicas/patología , Banda Diagonal de Broca/fisiopatología , Núcleos Septales/fisiopatología , Estado Epiléptico/fisiopatología , Amígdala del Cerebelo/fisiopatología , Animales , Prosencéfalo Basal/patología , Núcleo Basal de Meynert/patología , Corteza Cerebral/fisiopatología , Banda Diagonal de Broca/patología , Hipocampo/fisiopatología , Humanos , Vías Nerviosas/fisiopatología , Núcleos Septales/patología , Estado Epiléptico/patología
20.
Alzheimers Res Ther ; 12(1): 130, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33066807

RESUMEN

ß-Secretase1 (BACE1) protein concentrations and rates of enzyme activity, analyzed in human bodily fluids, are promising candidate biological markers for guidance in clinical trials investigating BACE1 inhibitors to halt or delay the dysregulation of the amyloid-ß pathway in Alzheimer's disease (AD). A robust body of evidence demonstrates an association between cerebrospinal fluid/blood BACE1 biomarkers and core pathophysiological mechanisms of AD, such as brain protein misfolding and aggregration, neurodegeneration, and synaptic dysfunction.In pharmacological trials, BACE1 candidate biomarkers may be applied to a wide set of contexts of use (CoU), including proof of mechanism, dose-finding, response and toxicity dose estimation. For clinical CoU, BACE1 biomarkers show good performance for prognosis and disease prediction.The roadmap toward validation and qualification of BACE1 biomarkers requires standardized pre-analytical and analytical protocols to reduce inter-site variance that may have contributed to inconsistent results.BACE1 biomarker-drug co-development programs, including biomarker-guided outcomes and endpoints, may support the identification of sub-populations with a higher probability to benefit from BACE1 inhibitors with a reduced risk of adverse effects, in line with the evolving precision medicine paradigm.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/tratamiento farmacológico , Secretasas de la Proteína Precursora del Amiloide , Péptidos beta-Amiloides , Ácido Aspártico Endopeptidasas , Biomarcadores , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA