Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
FASEB J ; 32(4): 2124-2136, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29259033

RESUMEN

Members of the TGF-ß superfamily take part in the control of folliculogenesis. Vasorin (Vasn) is a newly identified negative regulator of TGF-ß signaling whose possible involvement in ovarian physiology has never been studied. Here, we demonstrate that Vasn is expressed in the ovary by somatic cells of follicles, and that its expression is up-regulated by LH. We established a conditional knockout (cKO) mouse model in which Vasn is deleted specifically in granulosa cells of growing follicles from the secondary stage onwards. Using this model, we show that, upon hormonal stimulation, follicle ovulation size is almost 2-fold higher. This enhanced ovulatory response is associated with overactivation of the TGF-ß signaling pathway and a lower number of atretic antral follicles. Of importance, we demonstrate that the number of primordial follicles is reduced in prepubertal cKO mouse ovaries, which suggests that the production of VASN by growing follicles protects the ovarian reserve. Finally, analysis of systemic KO mice revealed that the ovarian reserve is almost 2.5-fold higher, which implies that Vasn may also play a role in primordial follicle formation. Overall, our findings reveal that Vasn is a new regulator that exerts an effect on several key ovarian functions, including folliculogenesis, maintenance of the ovarian reserve, and ovulation.-Rimon-Dahari, N., Heinemann-Yerushalmi, L., Hadas, R., Kalich-Philosoph, L., Ketter, D., Nevo, N., Galiani, D., Dekel, N. Vasorin: a newly identified regulator of ovarian folliculogenesis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de la Membrana/metabolismo , Folículo Ovárico/crecimiento & desarrollo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Células Cultivadas , Femenino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Folículo Ovárico/metabolismo , Reserva Ovárica , Ovulación
2.
BMC Genomics ; 19(1): 28, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29310578

RESUMEN

BACKGROUND: Adenosine-to-inosine (A-to-I) RNA editing is an epigenetic modification catalyzed by adenosine deaminases acting on RNA (ADARs), and is especially prevalent in the brain. We used the highly accurate microfluidics-based multiplex PCR sequencing (mmPCR-seq) technique to assess the effects of development and environmental stress on A-to-I editing at 146 pre-selected, conserved sites in the rat prefrontal cortex and amygdala. Furthermore, we asked whether changes in editing can be observed in offspring of stress-exposed rats. In parallel, we assessed changes in ADARs expression levels. RESULTS: In agreement with previous studies, we found editing to be generally higher in adult compared to neonatal rat brain. At birth, editing was generally lower in prefrontal cortex than in amygdala. Stress affected editing at the serotonin receptor 2c (Htr2c), and editing at this site was significantly altered in offspring of rats exposed to prereproductive stress across two generations. Stress-induced changes in Htr2c editing measured with mmPCR-seq were comparable to changes measured with Sanger and Illumina sequencing. Developmental and stress-induced changes in Adar and Adarb1 mRNA expression were observed but did not correlate with editing changes. CONCLUSIONS: Our findings indicate that mmPCR-seq can accurately detect A-to-I RNA editing in rat brain samples, and confirm previous accounts of a developmental increase in RNA editing rates. Our findings also point to stress in adolescence as an environmental factor that alters RNA editing patterns several generations forward, joining a growing body of literature describing the transgenerational effects of stress.


Asunto(s)
Adenosina/metabolismo , Encéfalo/metabolismo , Ambiente , Interacción Gen-Ambiente , Inosina/metabolismo , Edición de ARN , ARN/genética , ARN/metabolismo , Estrés Fisiológico/genética , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Factores de Edad , Animales , Epigénesis Genética , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Especificidad de Órganos/genética , Ratas , Receptor de Serotonina 5-HT2C/genética , Receptor de Serotonina 5-HT2C/metabolismo
3.
Proc Natl Acad Sci U S A ; 111(46): E4972-80, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25368174

RESUMEN

The HDL receptor scavenger receptor, class B type I (SR-BI) controls the structure and fate of plasma HDL. Female SR-BI KO mice are infertile, apparently because of their abnormal cholesterol-enriched HDL particles. We examined the growth and meiotic progression of SR-BI KO oocytes and found that they underwent normal germinal vesicle breakdown; however, SR-BI KO eggs, which had accumulated excess cholesterol in vivo, spontaneously activated, and they escaped metaphase II (MII) arrest and progressed to pronuclear, MIII, and anaphase/telophase III stages. Eggs from fertile WT mice were activated when loaded in vitro with excess cholesterol by a cholesterol/methyl-ß-cyclodextrin complex, phenocopying SR-BI KO oocytes. In vitro cholesterol loading of eggs induced reduction in maturation promoting factor and MAPK activities, elevation of intracellular calcium, extrusion of a second polar body, and progression to meiotic stages beyond MII. These results suggest that the infertility of SR-BI KO females is caused, at least in part, by excess cholesterol in eggs inducing premature activation and that cholesterol can activate WT mouse eggs to escape from MII arrest. Analysis of SR-BI KO female infertility raises the possibility that abnormalities in cholesterol metabolism might underlie some cases of human female infertility of unknown etiology.


Asunto(s)
HDL-Colesterol/metabolismo , Colesterol/toxicidad , Infertilidad Femenina/etiología , Meiosis/efectos de los fármacos , Oocitos/efectos de los fármacos , Receptores Depuradores de Clase B/deficiencia , Animales , Supervivencia Celular , Ácido Egtácico/farmacología , Femenino , Sistema de Señalización de MAP Quinasas , Meiosis/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oocitos/citología , Cuerpos Polares , Receptores Depuradores de Clase B/fisiología , Estroncio/farmacología , beta-Ciclodextrinas/farmacología
4.
FASEB J ; 29(11): 4670-81, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26207029

RESUMEN

Timely degradation of protein regulators of the cell cycle is essential for the completion of cell division. This degradation is promoted by the E3 anaphase-promoting complex/cyclosome (APC/C) and mediated by the E2 ubiquitin-conjugating enzymes (Ube2s). Unlike the ample information gathered regarding the meiotic E3 APC/C, the E2s participating in this cell division have never been studied. We identified Ube2C, -S, and -D3 as the E2 enzymes that regulate APC/C activity during meiosis of mouse oocytes. Their depletion reduces the levels of the first meiotic cytokinesis by 50%, and their overexpression doubles and accelerates its completion (50% as compared with 4% at 11 h). We also demonstrated that these E2s take part in ensuring appropriate spindle formation. It is noteworthy that high levels of Ube2C bring about the resumption of the first meiotic division, regardless of the formation of the spindle, overriding the spindle assembly checkpoint. Thus, alongside their canonical function in protein degradation, Ube2C and -S also control the extrusion of the first polar body. Overall, our study characterizes new regulators and unveils the novel roles they play during the meiotic division. These findings shed light on faithful chromosome segregation in oocytes and may contribute to better understanding of aneuploidy and its consequent genetic malformations.


Asunto(s)
Segregación Cromosómica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Meiosis/fisiología , Cuerpos Polares/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Animales , Femenino , Ratones , Cuerpos Polares/citología , Proteolisis , Enzimas Ubiquitina-Conjugadoras/genética
5.
Proc Natl Acad Sci U S A ; 108(4): 1462-7, 2011 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-21220312

RESUMEN

Ovulation is stimulated by the preovulatory surge of the pituitary luteinizing hormone (LH). Because the ovulatory response is commonly identified with inflammation, we explored the involvement of reactive oxygen species (ROS) in this process. Our experiments show that administration of broad-range scavengers of oxidative species into the ovarian bursa of mice, hormonally induced to ovulate, significantly reduced the rate of ovulation. LH-induced cumulus mucification/expansion, a necessary requirement for ovulation, was prevented by antioxidants both in vivo and in an ex vivo system of isolated intact ovarian follicles. Along this line, H(2)O(2) fully mimicked the effect of LH, bringing about an extensive mucification/expansion of the follicle-enclosed cumulus-oocyte complexes. Impaired progesterone production was observed in isolated follicles incubated with LH in the presence of the antioxidant agents. Furthermore, LH-stimulated up-regulation of genes, the expression of which is crucial for ovulation, was substantially attenuated upon ROS ablation. This system was also used for demonstrating the role of ROS in phosphorylation and activation of the EGF receptor as well as its downstream effector, p42/44 MAPK. Together, our results provide evidence that ovarian production of ROS is an essential preovulatory signaling event, most probably transiently triggered by LH.


Asunto(s)
Antioxidantes/farmacología , Ovulación/fisiología , Especies Reactivas de Oxígeno/metabolismo , Acetilcisteína/farmacología , Animales , Western Blotting , Hidroxianisol Butilado/farmacología , Femenino , Expresión Génica/efectos de los fármacos , Gonadotropinas/farmacología , Humanos , Peróxido de Hidrógeno/farmacología , Hormona Luteinizante/farmacología , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/metabolismo , Ovulación/efectos de los fármacos , Ovulación/genética , Oxidantes/farmacología , Fosforilación/efectos de los fármacos , Progesterona/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Técnicas de Cultivo de Tejidos
6.
FASEB J ; 26(11): 4495-505, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22859367

RESUMEN

Completion of the first meiotic division, manifested by extrusion of the first polar body (PBI), depends on proteasomal degradation of cyclin B1 and securin and the subsequent respective CDK1 inactivation and chromosome segregation. We aimed at identifying the polyubiquitin signal that mediates proteasomal action and at a better characterization of the role of CDK1 inactivation at this stage of meiosis. Microinjections of mutated ubiquitin proteins into mouse oocytes revealed that interference with lysine-11 polyubiquitin chains abrogated chromosome segregation and reduced PBI extrusion by 63% as compared to WT ubiquitin-injected controls. Inactivation of CDK1 in oocytes arrested at first metaphase by a proteasome inhibitor fully rescued PBI extrusion. However, removal of CDK1 inhibition failed to allow progression to the second metaphase, rather, inducing PBI reengulfment in 62% of the oocytes. Inhibition of either PLK1 or MEK1/2 during the first anaphase changed spindle dimensions. The PLK1 inhibitor also blocked PBI emission and prevented RhoA translocation. Our results identified lysine-11 rather than the canonic lysine-48 ubiquitin chains as the degradation signal in oocytes resuming meiosis, further disclosing that CDK1 inactivation is necessary and sufficient for PBI emission. This information significantly contributes to our understanding of faulty chromosome segregation that may lead to aneuploidy.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Oocitos/citología , Oocitos/metabolismo , Cuerpos Polares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Animales , Proteína Quinasa CDC2/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Segregación Cromosómica , Citocinesis , Femenino , Regulación Enzimológica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Meiosis/fisiología , Ratones , Cuerpos Polares/citología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Securina , Transducción de Señal , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo , Quinasa Tipo Polo 1
7.
Cell Cycle ; 21(8): 792-804, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35104175

RESUMEN

Fertilization triggers physiological degradation of maternal-mRNAs, which are then replaced by embryonic transcripts. Ample evidence suggests that Argonaut 2 (AGO2) is a possible post-fertilization regulator of maternal-mRNAs degradation; but its role in degradation of maternal-mRNAs during oocyte maturation remains obscure. Fyn, a member of the Src family kinases (SFKs), and an essential factor in oocyte maturation, was reported to inhibit AGO2 activity in oligodendrocytes. Our aim was to examine the role of Fyn and AGO2 in degradation of maternal-mRNAs during oocyte maturation by either suppressing their activity with SU6656 - an SFKs inhibitor; or by microinjecting DN-Fyn RNA for suppression of Fyn and BCl-137 for suppression of AGO2. Batches of fifteen mouse oocytes or embryos were analyzed by qPCR to measure the expression level of nine maternal-mRNAs that were selected for their known role in oocyte growth, maturation and early embryogenesis. We found that Fyn/SFKs are involved in maintaining the stability of at least four pre-transcribed mRNAs in oocytes at the germinal vesicle (GV) stage, whereas AGO2 had no role at this stage. During in-vivo oocyte maturation, eight maternal-mRNAs were significantly degraded. Inhibition of AGO2 prevented the degreadation of at least five maternal-mRNAs, whereas inhibition of Fyn/SFK prevented degradation of at least five Fyn maternal-mRNAs and two SFKs maternal-mRNAs; pointing at their role in promoting the physiological degradation which occurs during in-vivo oocyte maturation. Our findings imply the involvement of Fyn/SFKs in stabilization of maternal-mRNA at the GV stage and the involvement of Fyn, SFKs and AGO2 in degradation of maternal mRNAs during oocyte maturation.


Asunto(s)
Oogénesis , ARN Mensajero Almacenado , Animales , Ratones , Oocitos/metabolismo , Estabilidad del ARN/genética , ARN Mensajero Almacenado/metabolismo , Familia-src Quinasas/metabolismo
8.
Transl Psychiatry ; 11(1): 113, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547270

RESUMEN

Pre-reproductive stress (PRS) to adolescent female rats alters anxiogenic behavior in first (F1)- and second-generation (F2) offspring and increases mRNA expression of corticotropin-releasing factor receptor type 1 (Crhr1) in oocytes and in neonate offspring brain. Here, we ask whether the expression of Crhr1 and Crhr1-targeting microRNA is altered in brain, blood, and oocytes of exposed females and in the brain of their neonate and adult F1 and F2 offspring. In addition, we inquire whether maternal post-stress drug treatment reverses PRS-induced abnormalities in offspring. We find that PRS induces a selective increase in Crhr1-targeting mir-34a and mir-34c in blood and oocytes, while non-Crhr1 microRNA molecules remain unaltered. PRS induces similar microRNA changes in prefrontal cortex of F1 and F2 neonates. In adult animals, cortical Crhr1, but not mir-34, expression is affected by both maternal and direct stress exposure. Post-PRS fluoxetine (FLX) treatment increases pup mortality, and both FLX and the Crhr1 antagonist NBI 27914 reverse some of the effects of PRS and also have independent effects on F1 behavior and gene expression. PRS also alters behavior as well as gene and miRNA expression patterns in paternally derived F2 offspring, producing effects that are different from those previously found in maternally derived F2 offspring. These findings extend current knowledge on inter- and trans-generational transfer of stress effects, point to microRNA changes in stress-exposed oocytes as a potential mechanism, and highlight the consequences of post-stress pharmacological interventions in adolescence.


Asunto(s)
MicroARNs , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Fluoxetina , Expresión Génica , MicroARNs/genética , Oocitos , Fenotipo , Embarazo , Ratas
9.
Dev Biol ; 313(1): 1-12, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18005958

RESUMEN

Gap junctions, predominantly comprising connexin43 (Cx43), mediate cell-to-cell communication within the ovarian follicle. However, the partaking of Cx43 in the formation of the gap junction channels, between the oocyte and the somatic cells, is controversial. We addressed this dispute by crossing females that carry a Cx43 coding region, flanked by loxP recognition sites, with males expressing the Cre recombinase under the control of Zp3 promoter. Oocytes of the resultant Zp3Cre;Gja1(lox/lox) mice did not express Cx43 and were referred to as Cx43(del/del). Unexpectedly, a decrease in Cx43 was observed in cumulus/granulosa cells of some follicles as well. Nevertheless, no histological abnormalities were detected in the ovaries of the Zp3Cre;Gja1(lox/lox) mice. Furthermore, these mice ovulated normally and developed fully functional corpora lutea. Additionally, the ovarian Cx43(del/del) oocytes were meiotically arrested and transferred Lucifer yellow to the surrounding cumulus cells. However, mating Zp3Cre;Gja1(lox/lox) females with wild-type males resulted in a reduced rate of parturition and a substantial decrease in litter size. Further examination revealed that although preimplantation development of Zp3Cre;Gja1(lox/+) embryos was normal, the blactocysts exhibited impaired implantation. Our data suggest that total ablation of Cx43 in the oocyte, combined with its decrease in the surrounding somatic cells, allows normal oogenesis and folliculogenesis, ovulation and early embryonic development but severely impairs the implantation capacity of the resulting blactocysts.


Asunto(s)
Conexina 43/metabolismo , Infertilidad , Oocitos/metabolismo , Animales , Implantación del Embrión , Embrión de Mamíferos/metabolismo , Femenino , Uniones Comunicantes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
10.
Cell Cycle ; 18(20): 2629-2640, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31401933

RESUMEN

Resumption of meiosis in mammalian oocytes, defined as oocyte maturation, is stimulated by luteinizing hormone (LH). Fully grown oocytes can also mature spontaneously, upon their release from the ovarian follicle. However, growing oocytes fail to resume meiosis in vitro and the mechanism underlying their meiotic incompetence is unknown. It is commonly accepted that a drop in intraoocyte cyclic guanosine monophosphate (cGMP) resulting in the elevated activity of the oocyte-specific PDE3A leads to a decrease in cAMP content, essential for reinitiation of meiosis. We explored the regulation of these cyclic nucleotides and their degrading PDE3A in growing oocytes. Our research addressed the LH-induced rather than spontaneous oocyte maturation. We examined 16-21 as compared to 25-day-old, PMSG-primed rats, treated with the LH analog, hCG. The effect of LH was also examined ex vivo, in isolated ovarian follicles. We found that hCG failed to induce oocyte maturation and ovulation in the younger animals and that ovulation-associated genes were not upregulated in response to this gonadotropin. Furthemore, the drop of intraoocyte cGMP and cAMP observed in fully grown oocytes upon exposure of the ovary to LH, was not detected in growing oocytes. Interestingly, whereas the global expression of PDE3A in growing and fully grown oocytes is similar, a significantly lower activity of this enzyme was determined in growing oocytes. Our findings show that meiotic incompetence is associated with a relatively high oocyte cGMP concentration and a low activity of PDE3A, which in follicle-enclosed oocytes may represent the failure of the somatic follicle cells to respond to LH.


Asunto(s)
GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Meiosis/efectos de los fármacos , Oocitos/metabolismo , Animales , Gonadotropina Coriónica/farmacología , AMP Cíclico/metabolismo , Femenino , Hormona Folículo Estimulante/análogos & derivados , Gonadotropinas Equinas/farmacología , Hormona Luteinizante/análogos & derivados , Oogénesis/efectos de los fármacos , Folículo Ovárico/metabolismo , Ovulación/efectos de los fármacos , Ratas , Ratas Wistar
11.
Mol Cell Endocrinol ; 282(1-2): 32-8, 2008 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-18248883

RESUMEN

The gonadotropic hormones, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are synthesized by and released from the anterior pituitary in response to the hypothalamic gonadotropin-releasing hormone (GnRH) signaling. In the female, LH and FSH affect folliculogenesis, ovarian steroid production, oocyte maturation, ovulation and corpus luteum formation. We have recently studied the expression of GnRH and its receptor in the rat ovary and found organ-specific, estrous cycle-dependant, fluctuations. Subsequently, we wished to determine whether rat ovaries also express gonadotropic hormones. Using RT-PCR, we detected LHbeta, FSHbeta and the common alpha-subunit mRNA's in intact follicles, theca cells, corpora lutea and in meiotically competent and incompetent oocytes. Granulosa cells, however, express mRNA's for LHbeta and the common alpha-subunit, but not for FSHbeta. We cloned and sequenced the ovarian LHbeta transcript and found it to be longer (2.3kb) than the one produced by pituitary gonadotropes (0.8kb), due to a longer 5'-UTR. We studied the regulation of ovarian LHbeta mRNA in sexually immature female rats administered with pregnant mare serum gonadotropin (PMSG) and in adult cyclic rats. PMSG administration caused a significant decrease in LHbeta mRNA expression, detected by real-time PCR. Similarly, LHbeta mRNA levels were lower on estrous morning versus proestrous evening. Interestingly, ovarian content of LH remained unchanged following hypophysectomy, although ovarian weight was immensely reduced. Taken together, it seems probable that ovarian LH is heterologously/homologously regulated by pituitary, and possibly also by local gonadotropins. Thus, these findings may imply the existence of a local GnRH-gonadotropin axis in the mammalian ovary that may be involved in the management of processes that lead to ovulation.


Asunto(s)
Hormona Folículo Estimulante de Subunidad beta/metabolismo , Hormonas Glicoproteicas de Subunidad alfa/metabolismo , Hormona Luteinizante de Subunidad beta/metabolismo , Ovario/metabolismo , Animales , Femenino , Gonadotropinas Equinas/farmacología , Células de la Granulosa/citología , Células de la Granulosa/metabolismo , Hormona Luteinizante/metabolismo , Oocitos/citología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Ovario/citología , Ovario/efectos de los fármacos , Ovulación/fisiología , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Células Tecales/citología , Células Tecales/metabolismo
12.
Reproduction ; 135(3): 321-33, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18299425

RESUMEN

In the present work, we employed bioinformatics search tools to select ovulation-associated cDNA clones with a preference for those representing putative novel genes. Detailed characterization of one of these transcripts, 6C3, by real-time PCR and RACE analyses led to identification of a novel ovulation-associated gene, designated Ncoa7B. This gene was found to exhibit a significant homology to the Ncoa7 gene that encodes a conserved tissue-specific nuclear receptor coactivator. Unlike Ncoa7, Ncoa7B possesses a unique and highly conserved exon at the 5' end and encodes a protein with a unique N-terminal sequence. Extensive bioinformatics analysis has revealed that Ncoa7B has one identifiable domain, TLDc, which has recently been suggested to be involved in protection from oxidative DNA damage. An alignment of TLDc domain containing proteins was performed, and the closest relative identified was OXR1, which also has a corresponding, highly related short isoform, with just a TLDc domain. Moreover, Ncoa7B expression, as seen to date, seems to be restricted to mammals, while other TLDc family members have no such restriction. Multiple tissue analysis revealed that unlike Ncoa7, which was abundant in a variety of tissues with the highest expression in the brain, Ncoa7B mRNA expression is restricted to the reproductive system organs, particularly the uterus and the ovary. The ovarian expression of Ncoa7B was stimulated by human chorionic gonadotropin. Additionally, using real-time PCR, we demonstrated the involvement of multiple signaling pathways for Ncoa7B expression on preovulatory follicles.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Ovario/metabolismo , Ovulación/fisiología , Isoformas de Proteínas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células Cultivadas , Gonadotropina Coriónica/farmacología , Clonación Molecular , Biología Computacional , Cartilla de ADN/genética , ADN Complementario/análisis , Femenino , Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Coactivadores de Receptor Nuclear , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/metabolismo , Ovario/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Distribución Tisular
13.
FEBS Lett ; 581(25): 4891-8, 2007 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-17900570

RESUMEN

Ovulation is a complex process initiated by the surge of the pituitary luteinizing hormone (LH) that provokes the expression of specific genes. We report herein the isolation and characterization of an ovulation-associated, ovary-specific novel isoform of epoxide hydrolase 2 (Ephx2), Ephx2C. This variant is exclusively expressed in the granulosa cells of preovulatory mouse ovarian follicles. The LH-induced expression of Ephx2C is mediated by the protein kinase A and partially by the protein kinase C signaling pathways. The involvement of p38 kinase has also been demonstrated.


Asunto(s)
Epóxido Hidrolasas/metabolismo , Ovario/enzimología , Ovulación , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Epóxido Hidrolasas/genética , Femenino , Cinética , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Especificidad de Órganos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Alineación de Secuencia , Transducción de Señal , Distribución Tisular , Regulación hacia Arriba
14.
Sci Rep ; 7(1): 2238, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28533542

RESUMEN

Meiotically arrested oocytes are characterized by the presence of the nuclear structure known as germinal-vesicle (GV), the breakdown of which (GVBD) is associated with resumption of meiosis. Fyn is a pivotal factor in resumption of the first meiotic division; its inhibition markedly decreases the fraction of oocytes undergoing GVBD. Here, we reveal that in mouse oocytes Fyn is post-transcriptionally regulated by miR-125a-3p. We demonstrate that in oocytes resuming meiosis miR-125a-3p and Fyn exhibit a reciprocal expression pattern; miR-125a-3p decreases alongside with an increase in Fyn expression. Microinjection of miR-125a-3p inhibits GVBD, an effect that is markedly reduced by Fyn over-expression, and impairs the organization of the actin rim surrounding the nucleus. Lower rate of GVBD is also observed in oocytes exposed to cytochalasin-D or blebbistatin, which interfere with actin polymerization and contractility of actin bundles, respectively. By down-regulating Fyn in HEK-293T cells, miR-125a-3p reduces the interaction between actin and A-type lamins, which constitute the nuclear-lamina. Our findings suggest a mechanism, by which a decrease in miR-125a-3p during oocyte maturation facilitates GVBD by allowing Fyn up-regulation and the resulting stabilization of the interaction between actin and A-type lamins.


Asunto(s)
Actinas/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Meiosis , MicroARNs/genética , Oocitos/metabolismo , Proteínas Proto-Oncogénicas c-fyn/genética , Actinas/química , Actinas/metabolismo , Análisis de Varianza , Animales , Diferenciación Celular/genética , Femenino , Regulación de la Expresión Génica , Humanos , Ratones , Oocitos/citología , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Interferencia de ARN
15.
Endocrinology ; 147(5): 2280-6, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16439460

RESUMEN

Meiotically arrested mammalian oocytes are stimulated to resume meiosis by LH. This response, which can be reversed by elevation of intraoocyte cAMP levels, is associated with interruption of gap junctional communication (GJC) within the ovarian follicle. In the present study, we examined the hypothesis that disruption of GJC within the ovarian follicle is sufficient for induction of oocyte maturation. For this purpose, we incubated rat follicle-enclosed oocytes with carbenoxolone (CBX), a known blocker of gap junctions. We found that this selective disruptor of GJC promoted maturation of almost all the follicle-enclosed oocytes after 5 h of incubation; this response was also obtained by a transient (2 h) exposure to this agent. CBX-induced oocyte maturation was accompanied by a substantial decrease in intraoocyte concentrations of cAMP that was not associated with elevated activity of type 3A phosphodiesterase (PDE3A). The effect of CBX on reinitiation of meiosis was blocked by isobutylmethylxanthine, a phosphodiesterase inhibitor. Unlike LH, CBX did not activate MAPK in the follicular cells, and inhibition of the MAPK signaling pathway by means of UO126 did not prevent the resumption of meiosis. Injection of CBX into the ovarian bursa of intact animals stimulated maturation in 30% of the oocytes, whereas no maturation was observed in the contralateral ovary injected with PBS. We conclude that, because experimentally induced breakdown of communication within the ovarian follicle is associated with a drop in intraoocyte cAMP concentrations and results in resumption of meiosis, this could be the physiological mechanism employed by LH to stimulate oocyte maturation.


Asunto(s)
Uniones Comunicantes/fisiología , Oocitos/fisiología , Folículo Ovárico/metabolismo , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , Animales , Western Blotting , Butadienos/farmacología , Carbenoxolona/farmacología , Comunicación Celular , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3 , Femenino , Proteínas Activadoras de GTPasa/química , Células de la Granulosa/metabolismo , Hormona Luteinizante/metabolismo , Meiosis , Modelos Estadísticos , Nitrilos/farmacología , Oocitos/metabolismo , Folículo Ovárico/citología , Ovario/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Ratas , Factores de Tiempo
16.
Endocrinology ; 146(3): 1236-44, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15576461

RESUMEN

Resumption of meiosis, induced by LH, is preceded by the breakdown of gap junctional communication, which terminates the supply of cAMP from the somatic cells of the ovarian follicle to the oocyte. It has recently been shown that LH-induced reinitiation of meiosis is mediated by MAPK; however, the underlying molecular mechanism involved in the action of this enzyme remains unknown. We hypothesized that activation of MAPK interrupts junctional communication within the ovarian follicle, leading, in turn, to oocyte maturation. To test this hypothesis, we blocked the activation of MAPK by UO126, which specifically inhibits the MAPK signaling pathway. We analyzed junctional communication using three complementary methods: 1) patch-clamp analysis, which determined changes in the electrical coupling between two adjacent granulosa cells; 2) the scrape-loading technique, which monitored the spread of dyes through a granulosa cell layer; and 3) a metabolic coupling assay, which evaluated the transfer of radiolabeled uridine from the cumulus cells to the oocyte. We show, herein, that the somatic follicle cells, rather than the oocyte, activate MAPK immediately after their exposure to LH. Moreover, inhibition of LH-induced MAPK activation not only prevents oocyte maturation but also blocks the reduction in junctional communication. In addition, the appearance of the two phosphorylated forms of the gap junction protein, connexin 43, in response to LH, was avoided by UO126. We concluded that MAPK mediates LH-induced oocyte maturation by interrupting cell-to-cell communication within the ovarian follicle, possibly through phosphorylation of connexin 43.


Asunto(s)
Hormona Luteinizante/metabolismo , Sistema de Señalización de MAP Quinasas , Folículo Ovárico/metabolismo , Animales , Western Blotting , Butadienos/farmacología , Comunicación Celular , Conexina 43/metabolismo , Activación Enzimática , Femenino , Uniones Comunicantes , Células de la Granulosa/citología , Células de la Granulosa/metabolismo , Meiosis , Modelos Biológicos , Nitrilos/farmacología , Oocitos/metabolismo , Técnicas de Placa-Clamp , Fosforilación , Ratas , Ratas Wistar , Transducción de Señal , Factores de Tiempo
17.
Mol Endocrinol ; 16(2): 331-41, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11818504

RESUMEN

Activation of members of the MAPK family, Erk 1 and 2, in oocytes resuming meiosis is regulated by Mos. The cAMP-dependent PKA-mediated cAMP action that inhibits the resumption of meiosis also prevents MAPK activation. We hypothesized that PKA interferes with the MAPK signaling pathways at the level of Mos. We also assumed that this regulatory cascade may involve p34cdc2. To test our hypothesis we explored the role of PKA and p34cdc2 in regulating Mos expression. Rat oocytes that resume meiosis spontaneously served as our experimental model. We found that meiotically arrested rat oocytes express the c-mos mRNA with no detectable Mos protein. The presence of Mos was initially demonstrated at 6 h after meiosis reinitiation and was associated with its mRNA polyadenylation. (Bu)(2)cAMP inhibited Mos expression as well as c-mos mRNA polyadenylation. Both these cAMP actions were reversed by the highly selective inhibitor of the catalytic subunit of PKA, 4-cyano-3-methylisoquinoline. Polyadenylation of c-mos mRNA was also prevented by roscovitine, which is a potent inhibitor of p34cdc2. Ablation of MAPK activity by two specific MAPK signaling pathway inhibitors, either PD 98059 or U0126, did not interfere with Mos accumulation. Our results suggest that translation of Mos in rat oocytes is negatively regulated by a PKA-mediated cAMP action that inhibits c-mos mRNA polyadenylation and involves suppressed activity of p34cdc2. We also demonstrate that stimulation of Mos synthesis in the rat does not require an active MAPK.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Oocitos/enzimología , Oocitos/metabolismo , Poliadenilación , Proteínas Proto-Oncogénicas c-mos/genética , ARN Mensajero/metabolismo , Transducción de Señal , Animales , Western Blotting , Proteína Quinasa CDC2/metabolismo , AMP Cíclico/antagonistas & inhibidores , AMP Cíclico/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Cicloheximida/farmacología , Activación Enzimática/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Meiosis/efectos de los fármacos , Meiosis/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oocitos/efectos de los fármacos , Poliadenilación/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-mos/biosíntesis , Purinas/farmacología , ARN Mensajero/genética , Ratas , Roscovitina , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
18.
Endocrinology ; 145(4): 1617-24, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14684606

RESUMEN

The coordinated function of the different compartments of the follicle, the oocyte and the somatic cumulus/granulosa cells, is enabled by the presence of a network of cell-to-cell communication generated by gap junctions. Connexin 43 (Cx43) is the most abundant gap junction protein expressed by the ovarian follicle. The expression of Cx43 is subjected to the control of gonadotropins as follows: FSH up-regulates, whereas LH down-regulates its levels. The aim of this study was to explore the mechanism by which LH reduces the levels of Cx43 and to identify the signal transduction pathway involved in this process. The effect of LH was studied in vitro using isolated intact ovarian follicles. The possible mediators of LH-induced Cx43 down-regulation were examined by incubating the follicles with LH in the presence or absence of inhibitors of protein kinase A (PKA) and of MAPK signaling pathways. Our experiments revealed a 3-h half-life of Cx43 in both control and LH-treated follicles, suggesting that LH did not affect the rate of Cx43 degradation. We further demonstrated that the level of Cx43 mRNA was not significantly influenced by this gonadotropin. However, upon LH administration, [(35)S]methionine incorporation into Cx43 protein was remarkably reduced. The LH-induced arrest of Cx43 synthesis was counteracted by inhibitors of both the PKA and the MAPK cascades. We show herein that LH inhibits Cx43 expression by reducing its rate of translation and that this effect is mediated by both PKA and MAPK.


Asunto(s)
Conexina 43/metabolismo , Hormona Luteinizante/fisiología , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación hacia Abajo , Femenino , Hormona Luteinizante/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/fisiología , Ratas , Ratas Wistar
19.
Endocrinology ; 151(2): 755-65, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19996184

RESUMEN

Completion of the first meiosis in oocytes is achieved by the extrusion of the first polar body (PBI), a particular example of cell division. In mitosis, the small GTPase RhoA, which is activated by epithelial cell transforming protein 2 (ECT2), orchestrates contractile ring constriction, thus enabling cytokinesis. However, the involvement of this pathway in mammalian oocytes has not been established. To characterize the role of ECT2 in PBI emission in mouse oocytes, the small interfering RNA approach was employed. We found that ECT2 depletion significantly reduces PBI emission, induces first metaphase arrest, and generates oocytes containing two properly formed spindles of the second metaphase. Moreover, we describe, for the first time, that before PBI emission, RhoA forms a ring that is preceded by a dome-like accumulation at the oocyte cortex, next to the spindle. This unique mode of RhoA translocation failed to occur in the absence of ECT2. We further found that the Rho-dependent kinase, a main RhoA effector, is essential for PBI emission. In addition, we demonstrate herein that ECT2 is subjected to phosphorylation/dephosphorylation throughout meiosis in oocytes and further reveal that PBI emission is temporally associated with ECT2 dephosphorylation. Our data provide the first demonstration that an active cyclin-dependent kinase 1, the catalytic subunit of the maturation-promoting factor, phosphorylates ECT2 during the first meiotic metaphase and that cyclin-dependent kinase 1 inactivation at anaphase allows ECT2 dephosphorylation. In conclusion, our study demonstrates the indispensable role of the maturation-promoting factor/ECT2/RhoA pathway in PBI extrusion in mouse oocytes.


Asunto(s)
Metafase/fisiología , Oocitos/citología , Proteínas Proto-Oncogénicas/deficiencia , Huso Acromático/fisiología , Animales , Proteína Quinasa CDC2/metabolismo , Técnicas de Cultivo de Célula , ADN Complementario/genética , Femenino , Gonadotropinas Equinas/farmacología , Ratones , Ratones Endogámicos C57BL , Oocitos/fisiología , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/fisiología , Fosforilación , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/fisiología , ARN/genética , ARN/aislamiento & purificación , ARN Interferente Pequeño/genética , Proteína de Unión al GTP rhoA/genética
20.
Biol Reprod ; 78(6): 1111-8, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18337515

RESUMEN

Established gap junctional communication (GJC) in the ovarian follicle is essential for maintaining the oocytes in meiotic arrest. Alternatively, LH-induced reinitiation of meiosis is subsequent to breakdown of GJC. It was recently reported that nitric oxide (NO) inhibits maturation in rat follicle-enclosed oocytes and elevates GJC in cultured mesangial cells. Taking these observations into account, we hypothesized that NO prevents reinitiation of meiosis by antagonizing the effect of LH on GJC in the ovarian follicle. Indeed, we found that NO interferes with LH-induced disruption of GJC as well as with the decrease of the expression of the gap junction protein GJA1 (previously known as CONNEXIN43). We also demonstrated that NO prevents activation of LH-induced mitogen-activated protein kinases (MAPKs) 1 and 2 and inhibits cumulus expansion. Along this line, incubation of ovarian follicles with an inhibitor of soluble guanylate cyclase, which is a downstream NO effector, induced on its own oocyte maturation as well as cumulus expansion. Unlike previous studies, we show here that elevation of NO resulted in inhibition of ovulation. We conclude that the mechanism by which NO inhibits LH-induced oocyte maturation possibly involves a negative effect on MAPK activation and, in turn, interference with interruption of GJC. This action of NO in the ovarian follicle is apparently mediated by cGMP. In addition, the negative effect of NO on ovulation may be subsequent to its inhibitory effect on cumulus expansion. Together, this study suggests that the preovulatory decrease in NO concentrations is a prerequisite for the ovarian response to LH.


Asunto(s)
Óxido Nítrico/fisiología , Oocitos/fisiología , Ovulación/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Gonadotropina Coriónica/farmacología , Conexina 43/metabolismo , Femenino , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/fisiología , Hormona Luteinizante/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Modelos Biológicos , Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/farmacología , Oocitos/efectos de los fármacos , Oocitos/crecimiento & desarrollo , Oogénesis/efectos de los fármacos , Oogénesis/fisiología , Folículo Ovárico/citología , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/fisiología , Ovulación/efectos de los fármacos , Ratas , Ratas Wistar , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA