Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 607(7918): 294-300, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35609624

RESUMEN

Understanding the nanoscopic chemical and structural changes that drive instabilities in emerging energy materials is essential for mitigating device degradation. The power conversion efficiency of halide perovskite photovoltaic devices has reached 25.7 per cent in single-junction and 29.8 per cent in tandem perovskite/silicon cells1,2, yet retaining such performance under continuous operation has remained elusive3. Here we develop a multimodal microscopy toolkit to reveal that in leading formamidinium-rich perovskite absorbers, nanoscale phase impurities, including hexagonal polytype and lead iodide inclusions, are not only traps for photoexcited carriers, which themselves reduce performance4,5, but also, through the same trapping process, are sites at which photochemical degradation of the absorber layer is seeded. We visualize illumination-induced structural changes at phase impurities associated with trap clusters, revealing that even trace amounts of these phases, otherwise undetected with bulk measurements, compromise device longevity. The type and distribution of these unwanted phase inclusions depends on the film composition and processing, with the presence of polytypes being most detrimental for film photo-stability. Importantly, we reveal that both performance losses and intrinsic degradation processes can be mitigated by modulating these defective phase impurities, and demonstrate that this requires careful tuning of local structural and chemical properties. This multimodal workflow to correlate the nanoscopic landscape of beam-sensitive energy materials will be applicable to a wide range of semiconductors for which a local picture of performance and operational stability has yet to be established.

2.
Nano Lett ; 19(10): 7054-7061, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31496255

RESUMEN

Exciton fine structure splitting in semiconductors reflects the underlying symmetry of the crystal and quantum confinement. Because the latter factor strongly enhances the exchange interaction, most work has focused on nanostructures. Here, we report on the first observation of the bright exciton fine structure splitting in a bulk semiconductor crystal, where the impact of quantum confinement can be specifically excluded, giving access to the intrinsic properties of the material. Detailed investigation of the exciton photoluminescence and reflection spectra of a bulk methylammonium lead tribromide single crystal reveals a zero magnetic field splitting as large as ∼200 µeV. This result provides an important starting point for the discussion of the origin of the large bright exciton fine structure splitting observed in perovskite nanocrystals.

3.
ACS Energy Lett ; 9(6): 2696-2702, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38903402

RESUMEN

In metal halide perovskites, the complex dielectric screening together with low energy of phonon modes leads to non-negligible Fröhlich coupling. While this feature of perovskites has already been used to explain some of the puzzling aspects of carrier transport in these materials, the possible impact of polaronic effects on the optical response, especially excitonic properties, is much less explored. Here, with the use of magneto-optical spectroscopy, we revealed the non-hydrogenic character of the excitons in metal halide perovskites, resulting from the pronounced Fröhlich coupling. Our results can be well described by the polaronic-exciton picture where electron and hole interactions are no longer described by a Coulomb potential. Furthermore, we show experimental evidence that the carrier-phonon interaction leads to the enhancement of the carrier's effective mass. Notably, our measurements reveal a pronounced temperature dependence of the carrier's effective mass, which we attribute to a band structure renormalization induced by the population of low-energy phonon modes. This interpretation finds support in our first-principles calculations.

4.
ACS Nano ; 17(3): 2089-2100, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36719353

RESUMEN

The success of the colloidal semiconductor quantum dots (QDs) field is rooted in the precise synthetic control of QD size, shape, and composition, enabling electronically well-defined functional nanomaterials that foster fundamental science and motivate diverse fields of applications. While the exploitation of the strong confinement regime has been driving commercial and scientific interest in InP or CdSe QDs, such a regime has still not been thoroughly explored and exploited for lead-halide perovskite QDs, mainly due to a so far insufficient chemical stability and size monodispersity of perovskite QDs smaller than about 7 nm. Here, we demonstrate chemically stable strongly confined 5 nm CsPbBr3 colloidal QDs via a postsynthetic treatment employing didodecyldimethylammonium bromide ligands. The achieved high size monodispersity (7.5% ± 2.0%) and shape-uniformity enables the self-assembly of QD superlattices with exceptional long-range order, uniform thickness, an unusual rhombic packing with an obtuse angle of 104°, and narrow-band cyan emission. The enhanced chemical stability indicates the promise of strongly confined perovskite QDs for solution-processed single-photon sources, with single QDs showcasing a high single-photon purity of 73% and minimal blinking (78% "on" fraction), both at room temperature.

5.
Nat Commun ; 14(1): 2452, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117174

RESUMEN

Detecting low dose rates of X-rays is critical for making safer radiology instruments, but is limited by the absorber materials available. Here, we develop bismuth oxyiodide (BiOI) single crystals into effective X-ray detectors. BiOI features complex lattice dynamics, owing to the ionic character of the lattice and weak van der Waals interactions between layers. Through use of ultrafast spectroscopy, first-principles computations and detailed optical and structural characterisation, we show that photoexcited charge-carriers in BiOI couple to intralayer breathing phonon modes, forming large polarons, thus enabling longer drift lengths for the photoexcited carriers than would be expected if self-trapping occurred. This, combined with the low and stable dark currents and high linear X-ray attenuation coefficients, leads to strong detector performance. High sensitivities reaching 1.1 × 103 µC Gyair-1 cm-2 are achieved, and the lowest dose rate directly measured by the detectors was 22 nGyair s-1. The photophysical principles discussed herein offer new design avenues for novel materials with heavy elements and low-dimensional electronic structures for (opto)electronic applications.

6.
Adv Mater ; 34(36): e2202163, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35866352

RESUMEN

Mixed-halide mixed-cation hybrid perovskites are among the most promising perovskite compositions for application in a variety of optoelectronic devices due to their high performance, low cost, and bandgap-tuning capabilities. Instability pathways such as those driven by ionic migration, however, continue to hinder their further progress. Here, an operando variable-pitch synchrotron grazing-incidence wide-angle X-ray scattering technique is used to track the surface and bulk structural changes in mixed-halide mixed-cation perovskite solar cells under continuous load and illumination. By monitoring the evolution of the material structure, it is demonstrated that halide remixing along the electric field and illumination direction during operation hinders phase segregation and limits device instability. Correlating the evolution with directionality- and depth-dependent analyses, it is proposed that this halide remixing is induced by an electrostrictive effect acting along the substrate out-of-plane direction. However, this stabilizing effect is overwhelmed by competing halide demixing processes in devices exposed to humid air or with poorer starting performance. The findings shed new light on understanding halide de- and re-mixing competitions and their impact on device longevity. These operando techniques allow real-time tracking of the structural evolution in full optoelectronic devices and unveil otherwise inaccessible insights into rapid structural evolution under external stress conditions.

7.
J Phys Chem Lett ; 12(16): 4003-4011, 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33877840

RESUMEN

Halide perovskites are versatile semiconductors with applications including photovoltaics and light-emitting devices, having modular optoelectronic properties realizable through composition and dimensionality tuning. Layered Ruddlesden-Popper perovskites are particularly interesting due to their unique 2D character and charge carrier dynamics. However, long-range energy transport through exciton diffusion in these materials is not understood or realized. Here, local time-resolved luminescence mapping techniques are employed to visualize exciton transport in exfoliated flakes of the BA2MAn-1PbnI3n+1 perovskite family. Two distinct transport regimes are uncovered, depending on the temperature range. Above 100 K, diffusion is mediated by thermally activated hopping processes between localized states. At lower temperatures, a nonuniform energy landscape emerges in which transport is dominated by downhill energy transfer to lower-energy states, leading to long-range transport over hundreds of nanometers. Efficient, long-range, and switchable downhill transfer offers exciting possibilities for controlled directional long-range transport in these 2D materials for new applications.

8.
Chem Sci ; 12(44): 14686-14699, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34820084

RESUMEN

Lead-free halides with perovskite-related structures, such as the vacancy-ordered perovskite Cs3Bi2Br9, are of interest for photovoltaic and optoelectronic applications. We find that addition of SnBr2 to the solution-phase synthesis of Cs3Bi2Br9 leads to substitution of up to 7% of the Bi(iii) ions by equal quantities of Sn(ii) and Sn(iv). The nature of the substitutional defects was studied by X-ray diffraction, 133Cs and 119Sn solid state NMR, X-ray photoelectron spectroscopy and density functional theory calculations. The resulting mixed-valence compounds show intense visible and near infrared absorption due to intervalence charge transfer, as well as electronic transitions to and from localised Sn-based states within the band gap. Sn(ii) and Sn(iv) defects preferentially occupy neighbouring B-cation sites, forming a double-substitution complex. Unusually for a Sn(ii) compound, the material shows minimal changes in optical and structural properties after 12 months storage in air. Our calculations suggest the stabilisation of Sn(ii) within the double substitution complex contributes to this unusual stability. These results expand upon research on inorganic mixed-valent halides to a new, layered structure, and offer insights into the tuning, doping mechanisms, and structure-property relationships of lead-free vacancy-ordered perovskite structures.

9.
ACS Mater Lett ; 2(12): 1644-1652, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33313512

RESUMEN

Optoelectronic devices based on lead halide perovskites are processed in facile ways, yet are remarkably efficient. There are extensive research efforts investigating lead-free perovskite and perovskite-related compounds, yet there are challenges to synthesize these materials in forms that can be directly integrated into thin film devices rather than as bulk powders. Here, we report on the colloidal synthesis and characterization of lead-free, antifluorite Cs2ZrX6 (X = Cl, Br) nanocrystals that are readily processed into thin films. We use transmission electron microscopy and powder X-ray diffraction measurements to determine their size and structural properties, and solid-state nuclear magnetic resonance measurements reveal the presence of oleate ligand, together with a disordered distribution of Cs surface sites. Density functional theory calculations reveal the band structure and fundamental band gaps of 5.06 and 3.91 eV for Cs2ZrCl6 and Cs2ZrBr6, respectively, consistent with experimental values. Finally, we demonstrate that the Cs2ZrCl6 and Cs2ZrBr6 nanocrystal thin films exhibit tunable, broad white photoluminescence with quantum yields of 45% for the latter, with respective peaks in the blue and green spectral regions and mixed systems exhibiting properties between them. Our work represents a critical step toward the application of lead-free Cs2ZrX6 nanocrystal thin films into next-generation light-emitting applications.

10.
Joule ; 4(5): 1054-1069, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32467877

RESUMEN

Monolithic [Cs0.05(MA0. 17FA0. 83)0.95]Pb(I0.83Br0.17)3/Cu(In,Ga)Se2 (perovskite/CIGS) tandem solar cells promise high performance and can be processed on flexible substrates, enabling cost-efficient and ultra-lightweight space photovoltaics with power-to-weight and power-to-cost ratios surpassing those of state-of-the-art III-V semiconductor-based multijunctions. However, to become a viable space technology, the full tandem stack must withstand the harsh radiation environments in space. Here, we design tailored operando and ex situ measurements to show that perovskite/CIGS cells retain over 85% of their initial efficiency even after 68 MeV proton irradiation at a dose of 2 × 1012 p+/cm2. We use photoluminescence microscopy to show that the local quasi-Fermi-level splitting of the perovskite top cell is unaffected. We identify that the efficiency losses arise primarily from increased recombination in the CIGS bottom cell and the nickel-oxide-based recombination contact. These results are corroborated by measurements of monolithic perovskite/silicon-heterojunction cells, which severely degrade to 1% of their initial efficiency due to radiation-induced recombination centers in silicon.

11.
ISA Trans ; 95: 152-163, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31178034

RESUMEN

The subject area considered is discrete linear time delay systems operating repetitively on a finite time interval with actuator faults, where the system resets at the end of each operation. Regulation of the dynamics is by iterative learning control and performance goals imposed over finite frequency intervals for the case of uncertainty in the dynamic model. To derive the results, the generalized Kalman-Yakubovich-Popov lemma is used. A simulation based case study is also given to demonstrate the applicability of the new results.

12.
Adv Mater ; 31(51): e1905247, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31709688

RESUMEN

Halide perovskites are emerging as valid alternatives to conventional photovoltaic active materials owing to their low cost and high device performances. This material family also shows exceptional tunability of properties by varying chemical components, crystal structure, and dimensionality, providing a unique set of building blocks for new structures. Here, highly stable self-assembled lead-tin perovskite heterostructures formed between low-bandgap 3D and higher-bandgap 2D components are demonstrated. A combination of surface-sensitive X-ray diffraction, spatially resolved photoluminescence, and electron microscopy measurements is used to reveal that microstructural heterojunctions form between high-bandgap 2D surface crystallites and lower-bandgap 3D domains. Furthermore, in situ X-ray diffraction measurements are used during film formation to show that an ammonium thiocyanate additive delays formation of the 3D component and thus provides a tunable lever to substantially increase the fraction of 2D surface crystallites. These novel heterostructures will find use in bottom cells for stable tandem photovoltaics with a surface 2D layer passivating the 3D material, or in energy-transfer devices requiring controlled energy flow from localized surface crystallites to the bulk.

13.
Adv Mater ; 31(42): e1902374, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31489713

RESUMEN

Mixed-halide lead perovskites have attracted significant attention in the field of photovoltaics and other optoelectronic applications due to their promising bandgap tunability and device performance. Here, the changes in photoluminescence and photoconductance of solution-processed triple-cation mixed-halide (Cs0.06 MA0.15 FA0.79 )Pb(Br0.4 I0.6 )3 perovskite films (MA: methylammonium, FA: formamidinium) are studied under solar-equivalent illumination. It is found that the illumination leads to localized surface sites of iodide-rich perovskite intermixed with passivating PbI2 material. Time- and spectrally resolved photoluminescence measurements reveal that photoexcited charges efficiently transfer to the passivated iodide-rich perovskite surface layer, leading to high local carrier densities on these sites. The carriers on this surface layer therefore recombine with a high radiative efficiency, with the photoluminescence quantum efficiency of the film under solar excitation densities increasing from 3% to over 45%. At higher excitation densities, nonradiative Auger recombination starts to dominate due to the extremely high concentration of charges on the surface layer. This work reveals new insight into phase segregation of mixed-halide mixed-cation perovskites, as well as routes to highly luminescent films by controlling charge density and transfer in novel device structures.

14.
ACS Energy Lett ; 4(5): 1181-1188, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31119197

RESUMEN

Perovskite nanoplatelets (NPls) hold promise for light-emitting applications, having achieved photoluminescence quantum efficiencies approaching unity in the blue wavelength range, where other metal-halide perovskites have typically been ineffective. However, the external quantum efficiencies (EQEs) of blue-emitting NPl light-emitting diodes (LEDs) have reached only 0.12%. In this work, we show that NPl LEDs are primarily limited by a poor electronic interface between the emitter and hole injector. We show that the NPls have remarkably deep ionization potentials (≥6.5 eV), leading to large barriers for hole injection, as well as substantial nonradiative decay at the NPl/hole-injector interface. We find that an effective way to reduce these nonradiative losses is by using poly(triarylamine) interlayers, which lead to an increase in the  EQE of the blue (464 nm emission wavelength) and sky-blue (489 nm emission wavelength) LEDs to 0.3% and 0.55%, respectively. Our work also identifies the key challenges for further efficiency increases.

15.
J Phys Chem Lett ; 8(8): 1851-1855, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28393517

RESUMEN

We have accurately determined the exciton binding energy and reduced mass of single crystals of methylammonium lead triiodide using magneto-reflectivity at very high magnetic fields. The single crystal has excellent optical properties with a narrow line width of ∼3 meV for the excitonic transitions and a 2s transition that is clearly visible even at zero magnetic field. The exciton binding energy of 16 ± 2 meV in the low-temperature orthorhombic phase is almost identical to the value found in polycrystalline samples, crucially ruling out any possibility that the exciton binding energy depends on the grain size. In the room-temperature tetragonal phase, an upper limit for the exciton binding energy of 12 ± 4 meV is estimated from the evolution of 1s-2s splitting at high magnetic field.

16.
Adv Mater ; 28(48): 10757-10763, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27757994

RESUMEN

The extent to which the soft structural properties of metal halide perovskites affect their optoelectronic properties is unclear. X-ray diffraction and micro-photoluminescence measurements are used to show that there is a coexistence of both tetragonal and orthorhombic phases through the low-temperature phase transition, and that cycling through this transition can lead to structural changes and enhanced optoelectronic properties.

17.
Plasmonics ; 8(2): 913-919, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23662095

RESUMEN

A simple fabrication method of silver (Ag) nanoislands on ZnO films is presented. Continuous wave and time-resolved photoluminescence and transmission are employed to investigate modifications of visible and UV emissions of ZnO brought about by coupling to localized surface plasmons residing on Ag nanoislands. The size of the nanoislands, determining their absorption and scattering efficiencies, is found to be an important factor governing plasmonic modification of optical response of ZnO films. The presence of the Ag nanoislands of appropriate dimensions causes a strong (threefold) increase in emission intensity and up to 1.5 times faster recombination. The experimental results are successfully described by model calculations within the Mie theory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA