Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Front Synaptic Neurosci ; 13: 670467, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149390

RESUMEN

Synapse degeneration in the striatum has been associated with the early stages of Parkinson's and Huntington's diseases (PD and HD). However, the molecular mechanisms that trigger synaptic dysfunction and loss are not fully understood. Increasing evidence suggests that deficiency in Wnt signaling triggers synapse degeneration in the adult brain and that this pathway is affected in neurodegenerative diseases. Here, we demonstrate that endogenous Wnt signaling is essential for the integrity of a subset of inhibitory synapses on striatal medium spiny neurons (MSNs). We found that inducible expression of the specific Wnt antagonist Dickkopf-1 (Dkk1) in the adult striatum leads to the loss of inhibitory synapses on MSNs and affects the synaptic transmission of D2-MSNs. We also discovered that re-activation of the Wnt pathway by turning off Dkk1 expression after substantial loss of synapses resulted in the complete recovery of GABAergic and dopamine synapse number. Our results also show that re-activation of the Wnt pathway leads to a recovery of amphetamine response and motor function. Our studies identify the Wnt signaling pathway as a potential therapeutic target for restoring neuronal circuits after synapse degeneration.

2.
J Vis Exp ; (128)2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-29053699

RESUMEN

In the brain, synapses are specialized junctions between neurons, determining the strength and spread of neuronal signaling. The number of synapses is tightly regulated during development and neuronal maturation. Importantly, deficits in synapse number can lead to cognitive dysfunction. Therefore, the evaluation of synapse number is an integral part of neurobiology. However, as synapses are small and highly compact in the intact brain, the assessment of absolute number is challenging. This protocol describes a method to easily identify and evaluate synapses in hippocampal rodent slices using immunofluorescence microscopy. It includes a three-step procedure to evaluate synapses in high-quality confocal microscopy images by analyzing the co-localization of pre- and postsynaptic proteins in hippocampal slices. It also explains how the analysis is performed and gives representative examples from both excitatory and inhibitory synapses. This protocol provides a solid foundation for the analysis of synapses and can be applied to any research investigating the structure and function of the brain.


Asunto(s)
Encéfalo/fisiología , Hipocampo/fisiología , Animales , Ratones , Ratas , Sinapsis/fisiología
3.
Cancer Res ; 63(19): 6370-7, 2003 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-14559826

RESUMEN

Differential expression and activity of constitutive mitochondrial nitric oxide synthase (mtNOS) in the mitochondrial compartment is followed by significant variations in matrix nitric oxide (NO) steady-state concentration. The mitochondrial utilization of NO involves the production of superoxide anion and H(2)O(2), a species freely diffusible outside the mitochondria that participates in the modulation of cell proliferation and apoptosis and in cell transformation and cancer. On these bases, we analyzed the modulation of mtNOS in the frame of cellular redox state in M3, MM3, and P07 murine tumors and their respective cell lines, as compared with normal proliferating and quiescent tissues. The results showed that: (a) tumoral and proliferating mitochondria only retain 10-50% of the activity of complexes I, II-III, and IV and Mn-SOD of quiescent tissues; (b) normal proliferating tissues, like embryonic liver or pregnant mammary gland, have 10-20% of mtNOS expression and activity and mitochondrial H(2)O(2) yield than quiescent nonproliferating tissues; (c) similarly but irrespective of mtNOS expression, tumoral mitochondria have no >5% of mtNOS activity and H(2)O(2) yield of mature tissues; and (d) in opposition to stable tissues, both tumoral and normal proliferating cells exhibit high cyclin D1 expression and low pro-apoptotic p38mitogen-activated protein kinase activity. Dually, H(2)O(2) stimulated tumor cell proliferation (<10 microM) or markedly inhibited it (>10 microM) with parallel variations of cyclin D1, phospho-extracellular-regulated kinase1/2, and phospho-p38mitogen-activated protein kinase. It is surmised that decreased oxidative phosphorylation, defective tumoral mtNOS, and low mitochondrial NO-dependent H(2)O(2) may be a platform to link persistent tumoral growth to embryonic behavior.


Asunto(s)
Adenocarcinoma/enzimología , Peróxido de Hidrógeno/metabolismo , Neoplasias Mamarias Experimentales/enzimología , Mitocondrias/enzimología , Óxido Nítrico Sintasa/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , División Celular/fisiología , Línea Celular Tumoral , Ciclina D1/biosíntesis , Femenino , Hígado/citología , Hígado/embriología , Hígado/enzimología , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Mitocondrias/fisiología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Óxido Nítrico/metabolismo , Oxidación-Reducción , Embarazo , Ratas , Ratas Wistar , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos
4.
Curr Biol ; 26(19): 2551-2561, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27593374

RESUMEN

Synapse degeneration occurs early in neurodegenerative diseases and correlates strongly with cognitive decline in Alzheimer's disease (AD). The molecular mechanisms that trigger synapse vulnerability and those that promote synapse regeneration after substantial synaptic failure remain poorly understood. Increasing evidence suggests a link between a deficiency in Wnt signaling and AD. The secreted Wnt antagonist Dickkopf-1 (Dkk1), which is elevated in AD, contributes to amyloid-ß-mediated synaptic failure. However, the impact of Dkk1 at the circuit level and the mechanism by which synapses disassemble have not yet been explored. Using a transgenic mouse model that inducibly expresses Dkk1 in the hippocampus, we demonstrate that Dkk1 triggers synapse loss, impairs long-term potentiation, enhances long-term depression, and induces learning and memory deficits. We decipher the mechanism involved in synapse loss induced by Dkk1 as it can be prevented by combined inhibition of the Gsk3 and RhoA-Rock pathways. Notably, after loss of synaptic connectivity, reactivation of the Wnt pathway by cessation of Dkk1 expression completely restores synapse number, synaptic plasticity, and long-term memory. These findings demonstrate the remarkable capacity of adult neurons to regenerate functional circuits and highlight Wnt signaling as a targetable pathway for neuronal circuit recovery after synapse degeneration.


Asunto(s)
Hipocampo/fisiopatología , Péptidos y Proteínas de Señalización Intercelular/genética , Memoria a Largo Plazo , Plasticidad Neuronal , Sinapsis/fisiología , Vía de Señalización Wnt , Animales , Femenino , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Ratones Transgénicos
5.
Methods Enzymol ; 396: 399-414, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16291249

RESUMEN

For many years, mitochondrial respiration was thought to follow an "all or nothing" paradigm supporting the notion that in the normal O2 concentration range, respiration is mainly controlled by tissue demands. However, nitric oxide produced by cytosol or mitochondrial nitric oxide synthases adapts respiration to different physiologic conditions and increases the mitochondrial production of O2 active species that contributes to NO clearance. Because mitochondrial NO utilization is sensitive to environmental or hormonal modulation, and because diffusible active species, like H2O2, are able to regulate genes related to proliferation, quiescence, and death, we surmised that the two mechanisms converge to elicit the different responses in cell physiology.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Animales , Catalasa/metabolismo , Proliferación Celular , Electroforesis en Gel de Poliacrilamida , Glutatión Peroxidasa/metabolismo , Mitocondrias/enzimología , Óxido Nítrico Sintasa/metabolismo , Ácido Peroxinitroso/metabolismo , Superóxidos/metabolismo
6.
J Mol Cell Biol ; 6(1): 75-80, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24449494

RESUMEN

The molecular mechanisms that regulate synapse formation have been well documented. However, little is known about the factors that modulate synaptic stability. Synapse loss is an early and invariant feature of neurodegenerative diseases including Alzheimer's (AD) and Parkinson's disease. Notably, in AD the extent of synapse loss correlates with the severity of the disease. Hence, understanding the molecular mechanisms that underlie synaptic maintenance is crucial to reveal potential targets that will allow the development of therapies to protect synapses. Wnts play a central role in the formation and function of neuronal circuits. Moreover, Wnt signaling components are expressed in the adult brain suggesting their role in synaptic maintenance in the adult. Indeed, blockade of Wnts with the Wnt antagonist Dickkopf-1 (Dkk1) causes synapse disassembly in mature hippocampal cells. Dkk1 is elevated in brain biopsies from AD patients and animal models. Consistent with these findings, Amyloid-ß (Aß) oligomers induce the rapid expression of Dkk1. Importantly, Dkk1 neutralizing antibodies protect synapses against Aß toxicity, indicating that Dkk1 is required for Aß-mediated synapse loss. In this review, we discuss the role of Wnt signaling in synapse maintenance in the adult brain, particularly in relation to synaptic loss in neurodegenerative diseases.


Asunto(s)
Degeneración Nerviosa/patología , Enfermedades Neurodegenerativas/metabolismo , Sinapsis/patología , Vía de Señalización Wnt/fisiología , Animales , Humanos , Ratones , Modelos Biológicos , Degeneración Nerviosa/metabolismo , Enfermedades Neurodegenerativas/patología , Sinapsis/metabolismo , Vía de Señalización Wnt/genética
7.
Nat Commun ; 5: 4992, 2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25318560

RESUMEN

Synapse degeneration is an early and invariant feature of neurodegenerative diseases. Indeed, synapse loss occurs prior to neuronal degeneration and correlates with the symptom severity of these diseases. However, the molecular mechanisms that trigger synaptic loss remain poorly understood. Here we demonstrate that deficient Wnt signalling elicits synaptic degeneration in the adult striatum. Inducible expression of the secreted Wnt antagonist Dickkopf1 (Dkk1) in adult mice (iDkk1) decreases the number of cortico-striatal glutamatergic synapses and of D1 and D2 dopamine receptor clusters. Synapse loss occurs in the absence of axon retraction or cell death. The remaining excitatory terminals contain fewer synaptic vesicles and have a reduced probability of evoked transmitter release. IDkk1 mice show impaired motor coordination and are irresponsive to amphetamine. These studies identify Wnts as key endogenous regulators of synaptic maintenance and suggest that dysfunction in Wnt signalling contributes to synaptic degeneration at early stages in neurodegenerative diseases.


Asunto(s)
Destreza Motora , Enfermedades Neurodegenerativas/fisiopatología , Sinapsis/patología , Proteínas Wnt/metabolismo , Anfetaminas/química , Animales , Axones/metabolismo , Muerte Celular , Cuerpo Estriado/patología , Dopamina/metabolismo , Doxiciclina/química , Femenino , Heterocigoto , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Transducción de Señal
8.
J Mol Biol ; 414(5): 681-98, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-21978666

RESUMEN

Nerve growth factor (NGF) is a member of the neurotrophins, which are important regulators of embryonic development and adult function in the vertebrate nervous systems. The signaling elicited by NGF regulates diverse activities, including survival, axon growth, and synaptic plasticity. NGF action is mediated by engagement with two structurally unrelated transmembrane receptors, p75(NTR) and TrkA, which are co-expressed in a variety of cells. The functional interactions of these receptors have been widely demonstrated and include complex formation, convergence of signaling pathways, and indirect interaction through adaptor proteins. Each domain of the receptors was shown to be important for the formation of TrkA and p75(NTR) complexes, but only the intramembrane and transmembrane domains seemed to be crucial for the creation of high-affinity binding sites. However, whether these occur through a physical association of the receptors is unclear. In the present work, we demonstrate by Förster resonance energy transfer that p75(NTR) and TrkA are physically associated through their intracellular (IC) domains and that this interaction occurs predominantly at the cell membrane and prior to NGF stimulation. Our data suggest that there is a pool of receptors dimerized before NGF stimulus, which could contribute to the high-affinity binding sites. We modeled the three-dimensional structure of the TrkA IC domain by homology modeling, and with this and the NMR-resolved structure of p75(NTR), we modeled the heterodimerization of TrkA and p75(NTR) by docking methods and molecular dynamics. These models, together with the results obtained by Förster resonance energy transfer, provide structural insights into the receptors' physical association.


Asunto(s)
Factor de Crecimiento Nervioso/química , Receptor de Factor de Crecimiento Nervioso/química , Receptor trkA/química , Animales , Biología Computacional , Transferencia Resonante de Energía de Fluorescencia , Hipocampo/química , Ratones , Células PC12 , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Ratas , Homología Estructural de Proteína
9.
PLoS One ; 6(4): e19031, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21559502

RESUMEN

The subcellular localization and physiological functions of biomolecules are closely related and thus it is crucial to precisely determine the distribution of different molecules inside the intracellular structures. This is frequently accomplished by fluorescence microscopy with well-characterized markers and posterior evaluation of the signal colocalization. Rigorous study of colocalization requires statistical analysis of the data, albeit yet no single technique has been established as a standard method. Indeed, the few methods currently available are only accurate in images with particular characteristics. Here, we introduce a new algorithm to automatically obtain the true colocalization between images that is suitable for a wide variety of biological situations. To proceed, the algorithm contemplates the individual contribution of each pixel's fluorescence intensity in a pair of images to the overall Pearsons correlation and Manders' overlap coefficients. The accuracy and reliability of the algorithm was validated on both simulated and real images that reflected the characteristics of a range of biological samples. We used this algorithm in combination with image restoration by deconvolution and time-lapse confocal microscopy to address the localization of MEK1 in the mitochondria of different cell lines. Appraising the previously described behavior of Akt1 corroborated the reliability of the combined use of these techniques. Together, the present work provides a novel statistical approach to accurately and reliably determine the colocalization in a variety of biological images.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Sistema de Señalización de MAP Quinasas/fisiología , Mitocondrias/metabolismo , Algoritmos , Animales , Biomarcadores , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Ratones , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Células 3T3 NIH , Plásmidos/metabolismo , Factores de Tiempo
10.
PLoS One ; 4(10): e7523, 2009 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-19844585

RESUMEN

Akt is a serine/threonine kinase involved in cell proliferation, apoptosis, and glucose metabolism. Akt is differentially activated by growth factors and oxidative stress by sequential phosphorylation of Ser(473) by mTORC2 and Thr(308) by PDK1. On these bases, we investigated the mechanistic connection of H(2)O(2) yield, mitochondrial activation of Akt1 and cell cycle progression in NIH/3T3 cell line with confocal microscopy, in vivo imaging, and directed mutagenesis. We demonstrate that modulation by H(2)O(2) entails the entrance of cytosolic P-Akt1 Ser(473) to mitochondria, where it is further phosphorylated at Thr(308) by constitutive PDK1. Phosphorylation of Thr(308) in mitochondria determines Akt1 passage to nuclei and triggers genomic post-translational mechanisms for cell proliferation. At high H(2)O(2), Akt1-PDK1 association is disrupted and P-Akt1 Ser(473) accumulates in mitochondria in detriment to nuclear translocation; accordingly, Akt1 T308A is retained in mitochondria. Low Akt1 activity increases cytochrome c release to cytosol leading to apoptosis. As assessed by mass spectra, differential H(2)O(2) effects on Akt1-PDK interaction depend on the selective oxidation of Cys(310) to sulfenic or cysteic acids. These results indicate that Akt1 intramitochondrial-cycling is central for redox modulation of cell fate.


Asunto(s)
Mitocondrias/metabolismo , Oxidación-Reducción , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Apoptosis , Ciclo Celular , Linaje de la Célula , Ácido Cisteico/química , Citosol/metabolismo , Peróxido de Hidrógeno/química , Ratones , Modelos Biológicos , Células 3T3 NIH , Fosforilación , Ácidos Sulfénicos/química
11.
PLoS One ; 4(10): e7541, 2009 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-19847302

RESUMEN

Extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) are members of the MAPK family and participate in the transduction of stimuli in cellular responses. Their long-term actions are accomplished by promoting the expression of specific genes whereas faster responses are achieved by direct phosphorylation of downstream effectors located throughout the cell. In this study we determined that hERK1 translocates to the mitochondria of HeLa cells upon a proliferative stimulus. In the mitochondrial environment, hERK1 physically associates with (i) at least 5 mitochondrial proteins with functions related to transport (i.e. VDAC1), signalling, and metabolism; (ii) histones H2A and H4; and (iii) other cytosolic proteins. This work indicates for the first time the presence of diverse ERK-complexes in mitochondria and thus provides a new perspective for assessing the functions of ERK1 in the regulation of cellular signalling and trafficking in HeLa cells.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Secuencia de Aminoácidos , Proliferación Celular , Perfilación de la Expresión Génica , Glutatión Transferasa/metabolismo , Células HeLa , Humanos , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Proteómica/métodos , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
12.
PLoS One ; 3(1): e1443, 2008 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-18197253

RESUMEN

ERK1/2 is known to be involved in hormone-stimulated steroid synthesis, but its exact roles and the underlying mechanisms remain elusive. Both ERK1/2 phosphorylation and steroidogenesis may be triggered by cAMP/cAMP-dependent protein kinase (PKA)-dependent and-independent mechanisms; however, ERK1/2 activation by cAMP results in a maximal steroidogenic rate, whereas canonical activation by epidermal growth factor (EGF) does not. We demonstrate herein by Western blot analysis and confocal studies that temporal mitochondrial ERK1/2 activation is obligatory for PKA-mediated steroidogenesis in the Leydig-transformed MA-10 cell line. PKA activity leads to the phosphorylation of a constitutive mitochondrial MEK1/2 pool with a lower effect in cytosolic MEKs, while EGF allows predominant cytosolic MEK activation and nuclear pERK1/2 localization. These results would explain why PKA favors a more durable ERK1/2 activation in mitochondria than does EGF. By means of ex vivo experiments, we showed that mitochondrial maximal steroidogenesis occurred as a result of the mutual action of steroidogenic acute regulatory (StAR) protein -a key regulatory component in steroid biosynthesis-, active ERK1/2 and PKA. Our results indicate that there is an interaction between mitochondrial StAR and ERK1/2, involving a D domain with sequential basic-hydrophobic motifs similar to ERK substrates. As a result of this binding and only in the presence of cholesterol, ERK1/2 phosphorylates StAR at Ser(232). Directed mutagenesis of Ser(232) to a non-phosphorylable amino acid such as Ala (StAR S232A) inhibited in vitro StAR phosphorylation by active ERK1/2. Transient transfection of MA-10 cells with StAR S232A markedly reduced the yield of progesterone production. In summary, here we show that StAR is a novel substrate of ERK1/2, and that mitochondrial ERK1/2 is part of a multimeric protein kinase complex that regulates cholesterol transport. The role of MAPKs in mitochondrial function is underlined.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Progesterona/biosíntesis , Animales , Línea Celular , Colesterol/metabolismo , AMP Cíclico/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Activación Enzimática , Factor de Crecimiento Epidérmico/farmacología , Ratones , Mitocondrias/metabolismo , Fosfoproteínas/metabolismo , Fosforilación
13.
PLoS One ; 3(6): e2379, 2008 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-18545666

RESUMEN

Mitochondria are major cellular sources of hydrogen peroxide (H(2)O(2)), the production of which is modulated by oxygen availability and the mitochondrial energy state. An increase of steady-state cell H(2)O(2) concentration is able to control the transition from proliferating to quiescent phenotypes and to signal the end of proliferation; in tumor cells thereby, low H(2)O(2) due to defective mitochondrial metabolism can contribute to sustain proliferation. Mitogen-activated protein kinases (MAPKs) orchestrate signal transduction and recent data indicate that are present in mitochondria and regulated by the redox state. On these bases, we investigated the mechanistic connection of tumor mitochondrial dysfunction, H(2)O(2) yield, and activation of MAPKs in LP07 murine tumor cells with confocal microscopy, in vivo imaging and directed mutagenesis. Two redox conditions were examined: low 1 microM H(2)O(2) increased cell proliferation in ERK1/2-dependent manner whereas high 50 microM H(2)O(2) arrested cell cycle by p38 and JNK1/2 activation. Regarding the experimental conditions as a three-compartment model (mitochondria, cytosol, and nuclei), the different responses depended on MAPKs preferential traffic to mitochondria, where a selective activation of either ERK1/2 or p38-JNK1/2 by co-localized upstream kinases (MAPKKs) facilitated their further passage to nuclei. As assessed by mass spectra, MAPKs activation and efficient binding to cognate MAPKKs resulted from oxidation of conserved ERK1/2 or p38-JNK1/2 cysteine domains to sulfinic and sulfonic acids at a definite H(2)O(2) level. Like this, high H(2)O(2) or directed mutation of redox-sensitive ERK2 Cys(214) impeded binding to MEK1/2, caused ERK2 retention in mitochondria and restricted shuttle to nuclei. It is surmised that selective cysteine oxidations adjust the electrostatic forces that participate in a particular MAPK-MAPKK interaction. Considering that tumor mitochondria are dysfunctional, their inability to increase H(2)O(2) yield should disrupt synchronized MAPK oxidations and the regulation of cell cycle leading cells to remain in a proliferating phenotype.


Asunto(s)
Mitocondrias/enzimología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neoplasias/patología , Animales , Catálisis , Ciclo Celular , Línea Celular Tumoral , Núcleo Celular/enzimología , Ratones , Neoplasias/enzimología , Oxidación-Reducción , Fenotipo , Fosforilación , Transporte de Proteínas , Transducción de Señal
14.
J Biol Chem ; 281(8): 4779-86, 2006 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-16361261

RESUMEN

Although transcriptional effects of thyroid hormones have substantial influence on oxidative metabolism, how thyroid sets basal metabolic rate remains obscure. Compartmental localization of nitric-oxide synthases is important for nitric oxide signaling. We therefore examined liver neuronal nitric-oxide synthase-alpha (nNOS) subcellular distribution as a putative mechanism for thyroid effects on rat metabolic rate. At low 3,3',5-triiodo-L-thyronine levels, nNOS mRNA increased by 3-fold, protein expression by one-fold, and nNOS was selectively translocated to mitochondria without changes in other isoforms. In contrast, under thyroid hormone administration, mRNA level did not change and nNOS remained predominantly localized in cytosol. In hypothyroidism, nNOS translocation resulted in enhanced mitochondrial nitric-oxide synthase activity with low O2 uptake. In this context, NO utilization increased active O2 species and peroxynitrite yields and tyrosine nitration of complex I proteins that reduced complex activity. Hypothyroidism was also associated to high phospho-p38 mitogen-activated protein kinase and decreased phospho-extracellular signal-regulated kinase 1/2 and cyclin D1 levels. Similarly to thyroid hormones, but without changing thyroid status, nitric-oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester increased basal metabolic rate, prevented mitochondrial nitration and complex I derangement, and turned mitogen-activated protein kinase signaling and cyclin D1 expression back to control pattern. We surmise that nNOS spatial confinement in mitochondria is a significant downstream effector of thyroid hormone and hypothyroid phenotype.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Hipotiroidismo/patología , Hígado/enzimología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Animales , Ciclina D1/metabolismo , Citosol/metabolismo , Electrones , Electroforesis en Gel de Poliacrilamida , Proteínas HSP90 de Choque Térmico/metabolismo , Hipotiroidismo/metabolismo , Immunoblotting , Inmunoprecipitación , Hígado/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Microscopía Inmunoelectrónica , Mitocondrias/metabolismo , Mitocondrias Hepáticas/metabolismo , Modelos Químicos , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa/metabolismo , Oxidantes/metabolismo , Oxígeno/metabolismo , Ácido Peroxinitroso/química , Fenotipo , Isoformas de Proteínas , Transporte de Proteínas , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Fracciones Subcelulares/metabolismo , Hormonas Tiroideas/metabolismo , Transcripción Genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
Hepatology ; 40(1): 157-66, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15239099

RESUMEN

Mitochondrial nitric oxide synthase (mtNOS) is a fine regulator of oxygen uptake and reactive oxygen species that eventually modulates the activity of regulatory proteins and cell cycle progression. From this perspective, we examined liver mtNOS modulation and mitochondrial redox changes in developing rats from embryonic days 17-19 and postnatal day 2 (proliferating hepatocyte phenotype) through postnatal days 15-90 (quiescent phenotype). mtNOS expression and activity were almost undetectable in fetal liver, and progressively increased after birth by tenfold up to adult stage. NO-dependent mitochondrial hydrogen peroxide (H(2)O(2)) production and Mn-superoxide dismutase followed the developmental modulation of mtNOS and contributed to parallel variations of cytosolic H(2)O(2) concentration ([H(2)O(2)](ss)) and cell fluorescence. mtNOS-dependent [H(2)O(2)](ss) was a good predictor of extracellular signal-regulated kinase (ERK)/p38 activity ratio, cyclin D1, and tissue proliferation. At low 10(-11)-10(-12) M [H(2)O(2)](ss), proliferating phenotypes had high cyclin D1 and phospho-ERK1/2 and low phospho-p38 mitogen-activated protein kinase, while at 10(-9) M [H(2)O(2)](ss), quiescent phenotypes had the opposite pattern. Accordingly, leading postnatal day 2-isolated hepatocytes to embryo or adult redox conditions with H(2)O(2) or NO-H(2)O(2) scavengers, or with ERK inhibitor U0126, p38 inhibitor SB202190 or p38 activator anisomycin resulted in correlative changes of ERK/p38 activity ratio, cyclin D1 expression, and [(3)H] thymidine incorporation in the cells. Accordingly, p38 inhibitor SB202190 or N-acetyl-cysteine prevented H(2)O(2) inhibitory effects on proliferation. In conclusion, the results suggest that a synchronized increase of mtNOS and derived H(2)O(2) operate on hepatocyte signaling pathways to support the liver developmental transition from proliferation to quiescence.


Asunto(s)
Hepatocitos/citología , Hígado/embriología , Hígado/crecimiento & desarrollo , Mitocondrias Hepáticas/enzimología , Óxido Nítrico Sintasa/metabolismo , Transducción de Señal/fisiología , Envejecimiento/metabolismo , Animales , Animales Recién Nacidos , División Celular/fisiología , Citosol/metabolismo , Embrión de Mamíferos , Desarrollo Embrionario y Fetal , Homeostasis , Peróxido de Hidrógeno/metabolismo , Mitocondrias Hepáticas/fisiología , Concentración Osmolar , Oxidación-Reducción , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA