RESUMEN
BACKGROUND: Infections with high-risk human papillomaviruses (HPVs), causatively linked to cervical cancer, might also play a role in the development of prostate cancer. Furthermore, the polymorphism at codon 72 (encoding either arginine or proline) of the p53 tumor-suppressor gene is discussed as a possible determinant for cancer risk. The HPV E6 oncoprotein induces degradation of the p53 protein. The aim of this study was to analyse prostate carcinomas and hyperplasias of patients from Argentina for the presence of HPV DNA and the p53 codon 72 polymorphism genotype. METHODS: HPV DNA detection and typing were done by consensus L1 and type-specific PCR assays, respectively, and Southern blot hybridizations. Genotyping of p53 codon 72 polymorphism was performed both by allele specific primer PCRs and PCR-RFLP (Bsh1236I). Fischer's test with Woolf's approximation was used for statistical analysis. RESULTS: HPV DNA was detected in 17 out of 41 (41.5%) carcinoma samples, whereas all 30 hyperplasia samples were HPV-negative. Differences in p53 codon 72 allelic frequencies were not observed, neither between carcinomas and hyperplasias nor between HPV-positive and HPV-negative carcinomas. CONCLUSION: These results indicate that the p53 genotype is probably not a risk factor for prostate cancer, and that HPV infections could be associated with at least a subset of prostate carcinomas.
Asunto(s)
Adenocarcinoma/genética , Adenocarcinoma/virología , Sondas de ADN de HPV , ADN Viral/análisis , Genes p53/genética , Papillomaviridae/genética , Polimorfismo Genético , Hiperplasia Prostática/genética , Hiperplasia Prostática/virología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/virología , Argentina , Humanos , Masculino , Persona de Mediana Edad , Papillomaviridae/aislamiento & purificaciónRESUMEN
In the present study, we evaluated the effects of extracts and purified compounds from fresh leaves of Rosmarinus officinalis L. Pretreatment with the major anti-inflammatory compounds, carnosic acid (CA) and carnosol (CS), inhibited phorbol 12-myristate 13-acetate (PMA)-induced ear inflammation in mice with an EC(50) of 10.20 µg/cm(2) and 10.70 µg/cm(2), respectively. To further understand the anti-inflammatory mechanism of these compounds, we analyzed the in vivo expression of several inflammation-associated genes in mouse skin by reverse transcriptase-polymerase chain reaction (RT-PCR). Our data showed that CA and CS reduced the expression of IL-1ß and TNF-α but had less effect on fibronectin and ICAM-1 expression. Interestingly, both compounds selectively inhibited COX-2 but not COX-1. Histopathological analysis of hematoxylin and eosin (H&E)-stained tissue revealed a marked reduction in leukocyte infiltration and epidermal ulceration of PMA-treated ears when ears were pretreated with ethanolic extracts or pure CA. In vitro, we showed that ethanolic extract, carnosic acid and carnosol significantly inhibited the overproduction of nitric oxide (NO) in a dose-dependent manner in the RAW 264.7 murine macrophage cell line. For the first time in vivo, we showed that CA and CS differentially regulate the expression of inflammation-associated genes, thus demonstrating the pharmacological basis for the anti-inflammatory properties reported for CA and CS.