Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 190(2): 1214-1227, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35876808

RESUMEN

Root exudates and rhizosheaths of attached soil are important features of growing roots. To elucidate factors involved in rhizosheath formation, wild-type (WT) barley (Hordeum vulgare L. cv. Pallas) and a root hairless mutant, bald root barley (brb), were investigated with a combination of physiological, biochemical, and immunochemical assays. When grown in soil, WT barley roots bound ∼5-fold more soil than brb per unit root length. High molecular weight (HMW) polysaccharide exudates of brb roots had less soil-binding capacity than those of WT root exudates. Carbohydrate and glycan monoclonal antibody analyses of HMW polysaccharide exudates indicated differing glycan profiles. Relative to WT plants, root exudates of brb had reduced signals for arabinogalactan-protein (AGP), extensin, and heteroxylan epitopes. In contrast, the root exudate of 2-week-old brb plants contained ∼25-fold more detectable xyloglucan epitope relative to WT. Root system immunoprints confirmed the higher levels of release of the xyloglucan epitope from brb root apices and root axes relative to WT. Epitope detection with anion-exchange chromatography indicated that the increased detection of xyloglucan in brb exudates was due to enhanced abundance of a neutral polymer. Conversely, brb root exudates contained decreased amounts of an acidic polymer, with soil-binding properties, containing the xyloglucan epitope and glycoprotein and heteroxylan epitopes relative to WT. We, therefore, propose that, in addition to physically structuring soil particles, root hairs facilitate rhizosheath formation by releasing a soil-binding polysaccharide complex.


Asunto(s)
Hordeum , Anticuerpos Monoclonales/metabolismo , Carbohidratos , Epítopos/metabolismo , Exudados y Transudados , Hordeum/genética , Hordeum/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Polímeros/metabolismo , Polisacáridos/metabolismo , Suelo/química
2.
Plant J ; 103(5): 1666-1678, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32463959

RESUMEN

Rhizosheaths function in plant-soil interactions, and are proposed to form due to a mix of soil particle entanglement in root hairs and the action of adhesive root exudates. The soil-binding factors released into rhizospheres to form rhizosheaths have not been characterised. Analysis of the high-molecular-weight (HMW) root exudates of both wheat and maize plants indicate the presence of complex, highly branched polysaccharide components with a wide range of galactosyl, glucosyl and mannosyl linkages that do not directly reflect cereal root cell wall polysaccharide structures. Periodate oxidation indicates that it is the carbohydrate components of the HMW exudates that have soil-binding properties. The root exudates contain xyloglucan (LM25), heteroxylan (LM11/LM27) and arabinogalactan-protein (LM2) epitopes, and sandwich-ELISA evidence indicates that, in wheat particularly, these can be interlinked in multi-polysaccharide complexes. Using wheat as a model, exudate-binding monoclonal antibodies have enabled the tracking of polysaccharide release along root axes of young seedlings, and their presence at root hair surfaces and in rhizosheaths. The observations indicate that specific root exudate polysaccharides, distinct from cell wall polysaccharides, are adhesive factors secreted by root axes, and that they contribute to the formation and stabilisation of cereal rhizosheaths.


Asunto(s)
Raíces de Plantas/metabolismo , Polisacáridos/metabolismo , Suelo , Triticum/metabolismo , Zea mays/metabolismo , Glucanos/metabolismo , Xilanos/metabolismo
3.
New Phytol ; 225(4): 1461-1469, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31454421

RESUMEN

Plants produce a wide array of secretions both above and below ground. Known as mucilages or exudates, they are secreted by seeds, roots, leaves and stems and fulfil a variety of functions including adhesion, protection, nutrient acquisition and infection. Mucilages are generally polysaccharide-rich and often occur in the form of viscoelastic gels and in many cases have adhesive properties. In some cases, progress is being made in understanding the structure-function relationships of mucilages such as for the secretions that allow growing ivy to attach to substrates and the biosynthesis and secretion of the mucilage compounds of the Arabidopsis seed coat. Work is just beginning towards understanding root mucilage and the proposed adhesive polymers involved in the formation of rhizosheaths at root surfaces and for the secretions involved in host plant infection by parasitic plants. In this article, we summarise knowledge on plant exudates and mucilages within the concept of their functions in microenvironmental design, focusing in particular on their bioadhesive functions and the molecules responsible for them. We draw attention to areas of future knowledge need, including the microstructure of mucilages and their compositional and regulatory dynamics.


Asunto(s)
Biotecnología , Exudados de Plantas/química , Exudados de Plantas/fisiología , Mucílago de Planta/química , Mucílago de Planta/fisiología , Materiales Biocompatibles
4.
New Phytol ; 217(3): 1128-1136, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29139121

RESUMEN

Soil is a crucial component of the biosphere and is a major sink for organic carbon. Plant roots are known to release a wide range of carbon-based compounds into soils, including polysaccharides, but the functions of these are not known in detail. Using a monoclonal antibody to plant cell wall xyloglucan, we show that this polysaccharide is secreted by a wide range of angiosperm roots, and relatively abundantly by grasses. It is also released from the rhizoids of liverworts, the earliest diverging lineage of land plants. Using analysis of water-stable aggregate size, dry dispersion particle analysis and scanning electron microscopy, we show that xyloglucan is effective in increasing soil particle aggregation, a key factor in the formation and function of healthy soils. To study the possible roles of xyloglucan in the formation of soils, we analysed the xyloglucan contents of mineral soils of known age exposed upon the retreat of glaciers. These glacial forefield soils had significantly higher xyloglucan contents than detected in a UK grassland soil. We propose that xyloglucan released from plant rhizoids/roots is an effective soil particle aggregator and may, in this role, have been important in the initial colonization of land.


Asunto(s)
Glucanos/metabolismo , Plantas/metabolismo , Suelo/química , Xilanos/metabolismo , Álcalis/química , Carbono/análisis , Glucanos/ultraestructura , Compuestos Orgánicos/análisis , Xilanos/ultraestructura
5.
Plant Soil ; 428(1): 57-65, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30996485

RESUMEN

BACKGROUND AND AIMS: Understanding the structures and functions of carbon-based molecules in soils is an important goal in the context of soils as an ecosystem function of immense importance. Polysaccharides are implicated in maintaining soil aggregate status but have not been extensively dissected in terms of their structures and soil adhesion properties. This is largely because of the technical difficulties in identifying polysaccharide structures and quantifying any functional properties. METHODS: Here, we describe the use of a novel nitrocellulose-based adhesion assay to determine the relative capacities for soil adhesion of over twenty plant and microbial polysaccharides that are likely to be present in soil and to contribute to organic matter content and properties. Weights of soil adhered to spots of known amounts of specific polysaccharides were quantified by scanning of the nitrocellulose sheets. RESULTS: The most effective polysaccharides identified from this survey included chitosan, ß-1,3-glucan, gum tragacanth, xanthan and xyloglucan. We also demonstrate that the soil adhesion assay is suitable to assess the soil-binding properties of plant exudates. CONCLUSIONS: The soil adhesion assay will be useful for the functional dissection of the organic matter components of soils and also of the factors involved in soil attachment to plant roots and in rhizosheath formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA