Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 32(19-20): 1332-1343, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30254107

RESUMEN

Plants have evolved complex photoreceptor-controlled mechanisms to sense and respond to seasonal changes in day length. This ability allows plants to optimally time the transition from vegetative growth to flowering. UV-B is an important part intrinsic to sunlight; however, whether and how it affects photoperiodic flowering has remained elusive. Here, we report that, in the presence of UV-B, genetic mutation of REPRESSOR OF UV-B PHOTOMORPHOGENESIS 2 (RUP2) renders the facultative long day plant Arabidopsis thaliana a day-neutral plant and that this phenotype is dependent on the UV RESISTANCE LOCUS 8 (UVR8) UV-B photoreceptor. We provide evidence that the floral repression activity of RUP2 involves direct interaction with CONSTANS, repression of this key activator of flowering, and suppression of FLOWERING LOCUS T transcription. RUP2 therefore functions as an essential repressor of UVR8-mediated induction of flowering under noninductive short day conditions and thus provides a crucial mechanism of photoperiodic flowering control.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Flores/crecimiento & desarrollo , Fotoperiodo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Rayos Ultravioleta
2.
Development ; 139(21): 4072-82, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22992955

RESUMEN

The transition from vegetative to reproductive development is a central event in the plant life cycle. To time the induction of flowering correctly, plants integrate environmental and endogenous signals such as photoperiod, temperature and hormonal status. The hormone gibberellic acid (GA) has long been known to regulate flowering. However, the spatial contribution of GA signaling in flowering time control is poorly understood. Here we have analyzed the effect of tissue-specific misexpression of wild-type and GA-insensitive (dellaΔ17) DELLA proteins on the floral transition in Arabidopsis thaliana. We demonstrate that under long days, GA affects the floral transition by promoting the expression of flowering time integrator genes such as FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF) in leaves independently of CONSTANS (CO) and GIGANTEA (GI). In addition, GA signaling promotes flowering independently of photoperiod through the regulation of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in both the leaves and at the shoot meristem. Our data suggest that GA regulates flowering by controlling the spatial expression of floral regulatory genes throughout the plant in a day-length-specific manner.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Flores/metabolismo , Flores/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Giberelinas/metabolismo
3.
Plant Cell ; 24(8): 3320-32, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22942378

RESUMEN

Gibberellin (GA), a diterpene hormone, plays diverse roles in plant growth and development, including seed germination, stem elongation, and flowering time. Although it is known that GA accelerates flowering through degradation of transcription repressors, DELLAs, the underlying mechanism is poorly understood. We show here that DELLA directly binds to microRNA156 (miR156)-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL) transcription factors, which promote flowering by activating miR172 and MADS box genes. The interaction between DELLA and SPL interferes with SPL transcriptional activity and consequently delays floral transition through inactivating miR172 in leaves and MADS box genes at shoot apex under long-day conditions or through repressing MADS box genes at the shoot apex under short-day conditions. Our results elucidate the molecular mechanism by which GA controls flowering and provide the missing link between DELLA and MADS box genes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Flores/fisiología , Giberelinas/farmacología , MicroARNs/metabolismo , Proteínas Represoras/metabolismo , Activación Transcripcional , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Flores/efectos de los fármacos , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Giberelinas/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , MicroARNs/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Brotes de la Planta , Regiones Promotoras Genéticas , Unión Proteica , Mapeo de Interacción de Proteínas , Proteolisis , Proteínas Represoras/genética , Factores de Tiempo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transformación Genética , Técnicas del Sistema de Dos Híbridos
4.
Plant J ; 71(3): 517-26, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22409706

RESUMEN

Mapping-by-sequencing, as implemented in SHOREmap ('SHOREmapping'), is greatly accelerating the identification of causal mutations. The original SHOREmap approach based on resequencing of bulked segregants required a highly accurate and complete reference sequence. However, current whole-genome or transcriptome assemblies from next-generation sequencing data of non-model organisms do not produce chromosome-length scaffolds. We have therefore developed a method that exploits synteny with a related genome for genetic mapping. We first demonstrate how mapping-by-sequencing can be performed using a reduced number of markers, and how the associated decrease in the number of markers can be compensated for by enrichment of marker sequences. As proof of concept, we apply this method to Arabidopsis thaliana gene models ordered by synteny with the genome sequence of the distant relative Brassica rapa, whose genome has several large-scale rearrangements relative to A. thaliana. Our approach provides an alternative method for high-resolution genetic mapping in species that lack finished genome reference sequences or for which only RNA-seq assemblies are available. Finally, for improved identification of causal mutations by fine-mapping, we introduce a new likelihood ratio test statistic, transforming local allele frequency estimations into a confidence interval similar to conventional mapping intervals.


Asunto(s)
Arabidopsis/genética , Brassica rapa/genética , Mapeo Cromosómico/métodos , Genoma de Planta/genética , Sintenía/genética , Proteínas de Arabidopsis , Análisis Mutacional de ADN , ADN de Plantas/química , ADN de Plantas/genética , Flores/genética , Frecuencia de los Genes , Biblioteca de Genes , Ligamiento Genético , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Proteínas de Dominio MADS , Mutación , Análisis de Secuencia de ADN/métodos , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA