Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 136(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36763487

RESUMEN

Mitochondria and peroxisomes are dynamic signaling organelles that constantly undergo fission, driven by the large GTPase dynamin-related protein 1 (DRP1; encoded by DNM1L). Patients with de novo heterozygous missense mutations in DNM1L present with encephalopathy due to defective mitochondrial and peroxisomal fission (EMPF1) - a devastating neurodevelopmental disease with no effective treatment. To interrogate the mechanisms by which DRP1 mutations cause cellular dysfunction, we used human-derived fibroblasts from patients who present with EMPF1. In addition to elongated mitochondrial morphology and lack of fission, patient cells display lower coupling efficiency, increased proton leak and upregulation of glycolysis. Mitochondrial hyperfusion also results in aberrant cristae structure and hyperpolarized mitochondrial membrane potential. Peroxisomes show a severely elongated morphology in patient cells, which is associated with reduced respiration when cells are reliant on fatty acid oxidation. Metabolomic analyses revealed impaired methionine cycle and synthesis of pyrimidine nucleotides. Our study provides insight into the role of mitochondrial dynamics in cristae maintenance and the metabolic capacity of the cell, as well as the disease mechanism underlying EMPF1.


Asunto(s)
Encefalopatías , Dinaminas , Humanos , Potencial de la Membrana Mitocondrial/genética , Dinaminas/genética , Dinaminas/metabolismo , Encefalopatías/genética , Encefalopatías/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Mutación/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
2.
Development ; 149(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35792828

RESUMEN

Leigh syndrome (LS) is a rare, inherited neurometabolic disorder that presents with bilateral brain lesions caused by defects in the mitochondrial respiratory chain and associated nuclear-encoded proteins. We generated human induced pluripotent stem cells (iPSCs) from three LS patient-derived fibroblast lines. Using whole-exome and mitochondrial sequencing, we identified unreported mutations in pyruvate dehydrogenase (GM0372, PDH; GM13411, MT-ATP6/PDH) and dihydrolipoyl dehydrogenase (GM01503, DLD). These LS patient-derived iPSC lines were viable and capable of differentiating into progenitor populations, but we identified several abnormalities in three-dimensional differentiation models of brain development. LS patient-derived cerebral organoids showed defects in neural epithelial bud generation, size and cortical architecture at 100 days. The double mutant MT-ATP6/PDH line produced organoid neural precursor cells with abnormal mitochondrial morphology, characterized by fragmentation and disorganization, and showed an increased generation of astrocytes. These studies aim to provide a comprehensive phenotypic characterization of available patient-derived cell lines that can be used to study Leigh syndrome.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Leigh , Células-Madre Neurales , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Mutación/genética , Células-Madre Neurales/metabolismo , Organoides/metabolismo
3.
Mol Cell ; 66(3): 301-303, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475865

RESUMEN

In this issue of Molecular Cell, Benvegnù et al. (2017) report an unexpected phenomenon by which the E3 ligase mahogunin ring finger-1 (MGRN1) translocates to the nucleus in an age-dependent manner, revealing an intriguing mechanism that allows for an adaptive neuronal response to proteotoxic stress, often seen with aging.


Asunto(s)
Ubiquitina-Proteína Ligasas
4.
Development ; 148(4)2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608250

RESUMEN

Mitochondria are signaling hubs responsible for the generation of energy through oxidative phosphorylation, the production of key metabolites that serve the bioenergetic and biosynthetic needs of the cell, calcium (Ca2+) buffering and the initiation/execution of apoptosis. The ability of mitochondria to coordinate this myriad of functions is achieved through the exquisite regulation of fundamental dynamic properties, including remodeling of the mitochondrial network via fission and fusion, motility and mitophagy. In this Review, we summarize the current understanding of the mechanisms by which these dynamic properties of the mitochondria support mitochondrial function, review their impact on human cortical development and highlight areas in need of further research.


Asunto(s)
Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Mitofagia/fisiología , Animales , Apoptosis , Calcio/metabolismo , Cerebro , ADN Mitocondrial , Dinaminas , Humanos , Mitocondrias/genética , Dinámicas Mitocondriales/genética , Neurogénesis , Neuroglía , Fenotipo , Transducción de Señal
5.
J Neurosci Res ; 101(3): 354-366, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36461887

RESUMEN

Oligodendrocytes are the myelinating glia of the central nervous system and are generated after oligodendrocyte progenitor cells (OPCs) transition into pre-oligodendrocytes and then into myelinating oligodendrocytes. Myelin is essential for proper signal transmission within the nervous system and axonal metabolic support. Although the intrinsic and extrinsic factors that support the differentiation, survival, integration, and subsequent myelination of appropriate axons have been well investigated, little is known about how mitochondria-related pathways such as mitochondrial dynamics, bioenergetics, and apoptosis finely tune these developmental events. Previous findings suggest that changes to mitochondrial morphology act as an upstream regulatory mechanism of neural stem cell (NSC) fate decisions. Whether a similar mechanism is engaged during OPC differentiation has yet to be elucidated. Maintenance of mitochondrial dynamics is vital for regulating cellular bioenergetics, functional mitochondrial networks, and the ability of cells to distribute mitochondria to subcellular locations, such as the growing processes of oligodendrocytes. Myelination is an energy-consuming event, thus, understanding the interplay between mitochondrial dynamics, metabolism, and apoptosis will provide further insight into mechanisms that mediate oligodendrocyte development in healthy and disease states. Here we will provide a concise overview of oligodendrocyte development and discuss the potential contribution of mitochondrial mitochondrial-mediated mechanisms to oligodendrocyte bioenergetics and development.


Asunto(s)
Vaina de Mielina , Células-Madre Neurales , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Axones/metabolismo , Células-Madre Neurales/metabolismo , Diferenciación Celular/fisiología , Mitocondrias
6.
Mol Cell ; 58(2): 199-201, 2015 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-25884366

RESUMEN

In this and a recent issue of Molecular Cell, Liu et al. (2015) and Ichim et al. (2015) report that low levels of caspase activity triggered by limited mitochondrial outer membrane permeabilization (MOMP) promote genomic instability that drives tumorigenesis, providing a novel and unexpected link between these effectors of apoptosis and cancer initiation.


Asunto(s)
Apoptosis/fisiología , Daño del ADN , Inestabilidad Genómica , Membranas Mitocondriales/fisiología , Animales , Humanos
7.
Brain ; 144(8): 2499-2512, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34028503

RESUMEN

Solute carrier family 6 member 1 (SLC6A1) is abundantly expressed in the developing brain even before the CNS is formed. Its encoded GABA transporter 1 (GAT-1) is responsible for the reuptake of GABA into presynaptic neurons and glia, thereby modulating neurotransmission. GAT-1 is expressed globally in the brain, in both astrocytes and neurons. The GABA uptake function of GAT-1 in neurons cannot be compensated for by other GABA transporters, while the function in glia can be partially replaced by GABA transporter 3. Recently, many variants in SLC6A1 have been associated with a spectrum of epilepsy syndromes and neurodevelopmental disorders, including myoclonic atonic epilepsy, childhood absence epilepsy, autism, and intellectual disability, but the pathomechanisms associated with these phenotypes remain unclear. The presence of GAT-1 in both neurons and astrocytes further obscures the role of abnormal GAT-1 in the heterogeneous disease phenotype manifestations. Here we examine the impact on transporter trafficking and function of 22 SLC6A1 variants identified in patients with a broad spectrum of phenotypes. We also evaluate changes in protein expression and subcellular localization of the variant GAT-1 in various cell types, including neurons and astrocytes derived from human patient induced pluripotent stem cells. We found that a partial or complete loss-of-function represents a common disease mechanism, although the extent of GABA uptake reduction is variable. The reduced GABA uptake appears to be due to reduced cell surface expression of the variant transporter caused by variant protein misfolding, endoplasmic reticulum retention, and subsequent degradation. Although the extent of reduction of the total protein, surface protein, and the GABA uptake level of the variant transporters is variable, the loss of GABA uptake function and endoplasmic reticulum retention is consistent across induced pluripotent stem cell-derived cell types, including astrocytes and neurons, for the surveyed variants. Interestingly, we did not find a clear correlation of GABA uptake function and the disease phenotypes, such as myoclonic atonic epilepsy versus developmental delay, in this study. Together, our study suggests that impaired transporter protein trafficking and surface expression are the major disease-associated mechanisms associated with pathogenic SLC6A1 variants. Our results resemble findings from pathogenic variants in other genes affecting the GABA pathway, such as GABAA receptors. This study provides critical insight into therapeutic developments for SLC6A1 variant-mediated disorders and implicates that boosting transporter function by either genetic or pharmacological approaches would be beneficial.


Asunto(s)
Astrocitos/metabolismo , Epilepsia/genética , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Trastornos del Neurodesarrollo/genética , Neuronas/metabolismo , Bases de Datos Factuales , Epilepsia/metabolismo , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Humanos , Trastornos del Neurodesarrollo/metabolismo , Transporte de Proteínas/fisiología , Ácido gamma-Aminobutírico/metabolismo
8.
Mol Cell ; 50(3): 307-8, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23664374

RESUMEN

In this issue of Molecular Cell,Long and Crighton (2013) report a cell death priming mechanism activated by p53 that senses extracellular adenosine accumulated following chemotherapy or hypoxia, providing a novel connection between adenosine signaling and apoptosis.

9.
Am J Physiol Renal Physiol ; 318(2): F285-F297, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31760770

RESUMEN

Juxtaglomerular (JG) cells, major sources of renin, differentiate from metanephric mesenchymal cells that give rise to JG cells or a subset of smooth muscle cells of the renal afferent arteriole. During periods of dehydration and salt deprivation, renal mesenchymal stromal cells (MSCs) differentiate from JG cells. JG cells undergo expansion and smooth muscle cells redifferentiate to express renin along the afferent arteriole. Gene expression profiling comparing resident renal MSCs with JG cells indicates that the transcription factor Sox6 is highly expressed in JG cells in the adult kidney. In vitro, loss of Sox6 expression reduces differentiation of renal MSCs to renin-producing cells. In vivo, Sox6 expression is upregulated after a low-Na+ diet and furosemide. Importantly, knockout of Sox6 in Ren1d+ cells halts the increase in renin-expressing cells normally seen during a low-Na+ diet and furosemide as well as the typical increase in renin. Furthermore, Sox6 ablation in renin-expressing cells halts the recruitment of smooth muscle cells along the afferent arteriole, which normally express renin under these conditions. These results support a previously undefined role for Sox6 in renin expression.


Asunto(s)
Arteriolas/metabolismo , Aparato Yuxtaglomerular/irrigación sanguínea , Células Madre Mesenquimatosas/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Renina/metabolismo , Factores de Transcripción SOXD/metabolismo , Animales , Arteriolas/efectos de los fármacos , Presión Sanguínea , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Dieta Hiposódica , Diuréticos/farmacología , Furosemida/farmacología , Regulación de la Expresión Génica , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Renina/genética , Factores de Transcripción SOXD/deficiencia , Factores de Transcripción SOXD/genética , Transducción de Señal
10.
Mol Cell ; 46(5): 573-83, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22560721

RESUMEN

Human embryonic stem (hES) cells activate a rapid apoptotic response after DNA damage but the underlying mechanisms are unknown. A critical mediator of apoptosis is Bax, which is reported to become active and translocate to the mitochondria only after apoptotic stimuli. Here we show that undifferentiated hES cells constitutively maintain Bax in its active conformation. Surprisingly, active Bax was maintained at the Golgi rather than at the mitochondria, thus allowing hES cells to effectively minimize the risks associated with having preactivated Bax. After DNA damage, active Bax rapidly translocated to the mitochondria by a p53-dependent mechanism. Interestingly, upon differentiation, Bax was no longer active, and cells were not acutely sensitive to DNA damage. Thus, maintenance of Bax in its active form is a unique mechanism that can prime hES cells for rapid death, likely to prevent the propagation of mutations during the early critical stages of embryonic development.


Asunto(s)
Apoptosis , Células Madre Embrionarias/metabolismo , Aparato de Golgi/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Acetilación , Antígenos Nucleares/metabolismo , Transporte Biológico , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/citología , Silenciador del Gen , Genes bcl-2 , Humanos , Autoantígeno Ku , Mitocondrias/metabolismo , Proteína p53 Supresora de Tumor/fisiología , Proteína X Asociada a bcl-2/análisis
11.
J Immunol ; 198(5): 2147-2155, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28130495

RESUMEN

We reported previously that mouse embryonic stem cells do not have a functional IFN-based antiviral mechanism. The current study extends our investigation to the inflammatory response in mouse embryonic stem cells and mouse embryonic stem cell-differentiated cells. We demonstrate that LPS, TNF-α, and viral infection, all of which induce robust inflammatory responses in naturally differentiated cells, failed to activate NF-κB, the key transcription factor that mediates inflammatory responses, and were unable to induce the expression of inflammatory genes in mouse embryonic stem cells. Similar results were obtained in human embryonic stem cells. In addition to the inactive state of NF-κB, the deficiency in the inflammatory response in mouse embryonic stem cells is also attributed to the lack of functional receptors for LPS and TNF-α. In vitro differentiation can trigger the development of the inflammatory response mechanism, as indicated by the transition of NF-κB from its inactive to active state. However, a limited response to TNF-α and viral infection, but not to LPS, was observed in mouse embryonic stem cell-differentiated fibroblasts. We conclude that the inflammatory response mechanism is not active in mouse embryonic stem cells, and in vitro differentiation promotes only partial development of this mechanism. Together with our previous studies, the findings described in this article demonstrate that embryonic stem cells are fundamentally different from differentiated somatic cells in their innate immunity, which may have important implications in developmental biology, immunology, and embryonic stem cell-based regenerative medicine.


Asunto(s)
Fiebre Chikungunya/inmunología , Virus Chikungunya/inmunología , Células Madre Embrionarias/fisiología , Inflamación/inmunología , Interferones/metabolismo , FN-kappa B/metabolismo , Virosis/inmunología , Animales , Diferenciación Celular , Inmunidad , Lipopolisacáridos/inmunología , Ratones , Ratones Endogámicos DBA , Células RAW 264.7 , Factor de Necrosis Tumoral alfa/inmunología
12.
J Neurosci ; 33(46): 18098-108, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24227720

RESUMEN

Commitment to survival or apoptosis within expanding progenitor populations poses distinct risks and benefits to the organism. We investigated whether specialized mechanisms regulate apoptosis in mouse neural progenitors and in the progenitor-derived brain tumor medulloblastoma. Here, we identified constitutive activation of proapoptotic Bax, maintained in check by Bcl-xL, as a mechanism for rapid cell death, common to postnatal neural progenitors and medulloblastoma. We found that tonic activation of Bax in cerebellar progenitors, along with sensitivity to DNA damage, was linked to differentiation state. In cerebellar progenitors, active Bax localized to mitochondria, where it was bound to Bcl-xL. Disruption of Bax:Bcl-xL binding by BH3-mimetic ABT 737 caused rapid apoptosis of cerebellar progenitors and primary murine medulloblastoma cells. Conditional deletion of Mcl-1, in contrast, did not cause death of cerebellar progenitors. Our findings identify a mechanism for the sensitivity of brain progenitors to typical anticancer therapies and reveal that this mechanism persists in medulloblastoma, a malignant brain tumor markedly sensitive to radiation and chemotherapy.


Asunto(s)
Apoptosis/fisiología , Meduloblastoma/metabolismo , Células-Madre Neurales/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína bcl-X/metabolismo , Animales , Células Cultivadas , Femenino , Masculino , Meduloblastoma/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Células-Madre Neurales/patología , Unión Proteica/fisiología , Factores de Tiempo
13.
Bio Protoc ; 14(1): e4913, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38213321

RESUMEN

In vitro differentiation of human pluripotent stem cell (hPSC) model systems has furthered our understanding of human development. Techniques used to elucidate gene function during early development have encountered technical challenges, especially when targeting embryonic lethal genes. The introduction of CRISPRoff by Nuñez and collaborators provides an opportunity to heritably silence genes during long-term differentiation. We modified CRISPRoff and sgRNA Sleeping Beauty transposon vectors that depend on tetracycline-controlled transcriptional activation to silence the expression of embryonic lethal genes at different stages of differentiation in a stable manner. We provide instructions on how to generate sgRNA transposon vectors that can be used in combination with our CRISPRoff transposon vector and a stable hPSC line. We validate the use of this tool by silencing MCL-1, an anti-apoptotic protein, which results in pre-implantation embryonic lethality in mice; this protein is necessary for oligodendrocyte and hematopoietic stem cell development and is required for the in vitro survival of hPSCs. In this protocol, we use an adapted version of the differentiation protocol published by Douvaras and Fossati (2015) to generate oligodendrocyte lineage cells from human embryonic stem cells (hESCs). After introduction of the CRISPRoff and sgRNAs transposon vectors in hESCs, we silence MCL-1 in committed oligodendrocyte neural precursor cells and describe methods to measure its expression. With the methods described here, users can design sgRNA transposon vectors targeting MCL-1 or other essential genes of interest to study human oligodendrocyte development or other differentiation protocols that use hPSC model systems. Key features • Generation of an inducible CRISPRoff Sleeping Beauty transposon system. • Experiments performed in vitro for generation of inducible CRISPRoff pluripotent stem cell line amenable to oligodendrocyte differentiation. • Strategy to downregulate an essential gene at different stages of oligodendrocyte development.

14.
bioRxiv ; 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38077064

RESUMEN

Neural organoids derived from human induced pluripotent stem cells (iPSCs) provide a model to study the earliest stages of human brain development, including neurogenesis, neural differentiation, and synaptogenesis. However, neural organoids lack supportive tissues and some non-neural cell types that are key regulators of brain development. Neural organoids have instead been co-cultured with non-neural structures and cell types to promote their maturation and model interactions with neuronal cells. One structure that does not form de novo with neural organoids is the meninges, a tri-layered structure that surrounds the CNS and secretes key signaling molecules required for mammalian brain development. Most studies of meninges-brain signaling have been performed in mice or using two-dimensional (2D) cultures of human cells, the latter not recapitulating the architecture and cellular diversity of the tissue. To overcome this, we developed a co-culture system of neural organoids generated from human iPSCs fused with fetal leptomeninges from mice with fluorescently labeled meninges (Col1a1-GFP). These proof-of-concept studies test the stability of the different cell types in the leptomeninges (fibroblast and macrophage) and the fused brain organoid (progenitor and neuron), as well as the interface between the organoid and meningeal tissue. We test the longevity of the fusion pieces after 30 days and 60 days in culture, describe best practices for preparing the meninges sample prior to fusion, and examine the feasibility of single or multiple meninges pieces fused to a single organoid. We discuss potential uses of the current version of the LMNO fusion model and opportunities to improve the system.

15.
Res Sq ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38168409

RESUMEN

Neural organoids derived from human induced pluripotent stem cells (iPSCs) provide a model to study the earliest stages of human brain development, including neurogenesis, neural differentiation, and synaptogenesis. However, neural organoids lack supportive tissues and some non-neural cell types that are key regulators of brain development. Neural organoids have instead been co-cultured with non-neural structures and cell types to promote their maturation and model interactions with neuronal cells. One structure that does not form de novo with neural organoids is the meninges, a tri-layered structure that surrounds the CNS and secretes key signaling molecules required for mammalian brain development. Most studies of meninges-brain signaling have been performed in mice or using two-dimensional (2D) cultures of human cells, the latter not recapitulating the architecture and cellular diversity of the tissue. To overcome this, we developed a co-culture system of neural organoids generated from human iPSCs fused with fetal leptomeninges from mice with fluorescently labeled meninges (Col1a1-GFP). These proof-of-concept studies test the stability of the different cell types in the leptomeninges (fibroblast and macrophage) and the fused brain organoid (progenitor and neuron), as well as the interface between the organoid and meningeal tissue. We test the longevity of the fusion pieces after 30 days and 60 days in culture, describe best practices for preparing the meninges sample prior to fusion, and examine the feasibility of single or multiple meninges pieces fused to a single organoid. We discuss potential uses of the current version of the LMNO fusion model and opportunities to improve the system.

16.
bioRxiv ; 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36747715

RESUMEN

Inborn Errors of Metabolism (IEM) and Immunity (IEI) are Mendelian diseases in which complex phenotypes and patient rarity can limit clinical annotations. Few genes are assigned to both IEM and IEI, but immunometabolic demands suggest functional overlap is underestimated. We applied CRISPR screens to test IEM genes for immunologic roles and IEI genes for metabolic effects and found considerable crossover. Analysis of IEM showed N-linked glycosylation and the de novo hexosamine synthesis enzyme, Gfpt1 , are critical for T cell expansion and function. Interestingly, Gfpt1 -deficient T H 1 cells were more affected than T H 17 cells, which had increased Nagk for salvage UDP-GlcNAc synthesis. Screening IEI genes showed the transcription factor Bcl11b promotes CD4 + T cell mitochondrial activity and Mcl1 expression necessary to prevent metabolic stress. These data illustrate a high degree of functional overlap of IEM and IEI genes and point to potential immunometabolic mechanisms for a previously unappreciated set of these disorders. HIGHLIGHTS: Inborn errors of immunity and metabolism have greater overlap than previously known Gfpt1 deficiency causes an IEM but also selectively regulates T cell subset fate Loss of Bcl11b causes a T cell deficiency IEI but also harms mitochondrial function Many IEM may have immune defects and IEI may be driven by metabolic mechanisms.

17.
J Biol Chem ; 286(46): 40083-90, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21953454

RESUMEN

Expression of the clusterin (CLU) gene results in the synthesis of a conventional secretory isoform set (pre- and mature secretory clusterin proteins, psCLU/sCLU), as well as another set of intracellular isoforms, appearing in the cytoplasm (pre-nuclear CLU, pnCLU) and in the nucleus as an ∼55-kDa mature nuclear clusterin (nCLU) form. These two isoform sets have opposing cell functions: pro-survival and pro-death, respectively. Although much is known about the regulation and function of sCLU as a pro-survival factor, the regulation and function of endogenous nCLU in cell death are relatively unexplored. Here, we show that depletion of endogenous nCLU protein using siRNA specific to its truncated mRNA increased clonogenic survival of ionizing radiation (IR)-exposed cells. nCLU-mediated apoptosis was Bax-dependent, and lethality correlated with accumulation of mature nCLU protein. nCLU accumulation was regulated by CRM1 because binding between CRM1 and nCLU proteins was significantly diminished by leptomycin B (LMB), and nuclear levels of nCLU protein were significantly enhanced by LMB and IR co-treatment. Moreover, LMB treatment significantly enhanced IR-induced nCLU-mediated cell death responses. Importantly, bax(-/-) and bax(-/-)/bak(-/-) double knock-out cells were resistant to nCLU-mediated cell death, whereas bak(-/-) or wild-type bax(+/+)/bak(+/+) cells were hypersensitive. The regulation of nCLU by CRM1 nuclear export/import may explain recent clinical results showing that highly malignant tumors have lost the ability to accumulate nCLU levels, thereby avoiding growth inhibition and cell death.


Asunto(s)
Apoptosis/efectos de la radiación , Núcleo Celular/metabolismo , Clusterina/metabolismo , Rayos gamma , Carioferinas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/efectos de la radiación , Animales , Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Núcleo Celular/genética , Clusterina/genética , Ácidos Grasos Insaturados/farmacología , Humanos , Carioferinas/genética , Ratones , Ratones Noqueados , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/genética , Receptores Citoplasmáticos y Nucleares/genética , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína Exportina 1
18.
Front Mol Neurosci ; 15: 840265, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571368

RESUMEN

Mitochondrial homeostasis -including function, morphology, and inter-organelle communication- provides guidance to the intrinsic developmental programs of corticogenesis, while also being responsive to environmental and intercellular signals. Two- and three-dimensional platforms have become useful tools to interrogate the capacity of cells to generate neuronal and glia progeny in a background of metabolic dysregulation, but the mechanistic underpinnings underlying the role of mitochondria during human neurogenesis remain unexplored. Here we provide a concise overview of cortical development and the use of pluripotent stem cell models that have contributed to our understanding of mitochondrial and metabolic regulation of early human brain development. We finally discuss the effects of mitochondrial fitness dysregulation seen under stress conditions such as metabolic dysregulation, absence of developmental apoptosis, and hypoxia; and the avenues of research that can be explored with the use of brain organoids.

19.
Cell Rep Methods ; 2(3): 100190, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35475223

RESUMEN

The activation of BAX through intricate intramolecular changes is critical for apoptosis. In this issue of Cell Reports Methods, Gelles et al. report engineering FLAMBE, an elegant fluorescence polarization ligand assay for monitoring the early activation of monomeric BAX via real-time release of a peptide probe, expanding the repertoire of BAX activation assays to the single-molecule level.


Asunto(s)
Apoptosis , Gusto , Proteína X Asociada a bcl-2/genética , Ligandos , Apoptosis/fisiología , Polarización de Fluorescencia
20.
Nat Cell Biol ; 24(4): 434-447, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35414019

RESUMEN

Pluripotent stem cells can be driven by manipulation of Wnt signalling through a series of states similar to those that occur during early embryonic development, transitioning from an epithelial phenotype into the cardiogenic-mesoderm lineage and ultimately into functional cardiomyocytes. Strikingly, we observed that initiation of differentiation in induced pluripotent stem cells (iPSCs) and embryonic stem cells triggers widespread apoptosis, followed by a synchronous epithelial-mesenchymal transition (EMT). Apoptosis is caused by the absence of bFGF in the differentiation medium. EMT requires induction of the transcription factors SNAI1 and SNAI2 downstream of MESP1 expression, and double knockout of SNAI1 and SNAI2 or loss of MESP1 in iPSCs blocks EMT and prevents cardiac differentiation. Remarkably, blockade of early apoptosis, either chemically or by ablation of pro-apoptotic genes, also completely prevents EMT, suppressing even the earliest events in mesoderm conversion, including T/BRA, TBX6 and MESP1 induction. Conditioned medium from WNT-activated wild-type iPSCs overcomes the block to EMT by cells incapable of apoptosis, suggesting involvement of soluble factors from apoptotic cells in mesoderm conversion. Knockout of the PANX1 channel blocked EMT, whereas treatment with a purinergic P2-receptor inhibitor or addition of apyrase demonstrated a requirement for nucleotide triphosphate signalling. ATP and/or UTP was sufficient to induce a partial EMT in apoptosis-incapable cells treated with WNT activator. Notably, knockout of the ATP/UTP-specific P2Y2 receptor blocked EMT and mesoderm induction. We conclude that in addition to acting as chemo-attractants for clearance of apoptotic cells, nucleotides can function as essential paracrine signals that, with WNT signalling, create a logical AND gate for mesoderm specification.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Nucleótidos , Adenosina Trifosfato/metabolismo , Apoptosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Células Madre Embrionarias/metabolismo , Mesodermo , Nucleótidos/metabolismo , Uridina Trifosfato/metabolismo , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA