Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 22(5): e3002592, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38691548

RESUMEN

Stomata are pores on plant aerial surfaces, each bordered by a pair of guard cells. They control gas exchange vital for plant survival. Understanding how guard cells respond to environmental signals such as atmospheric carbon dioxide (CO2) levels is not only insightful to fundamental biology but also relevant to real-world issues of crop productivity under global climate change. In the past decade, multiple important signaling elements for stomatal closure induced by elevated CO2 have been identified. Yet, there is no comprehensive understanding of high CO2-induced stomatal closure. In this work, we assemble a cellular signaling network underlying high CO2-induced stomatal closure by integrating evidence from a comprehensive literature analysis. We further construct a Boolean dynamic model of the network, which allows in silico simulation of the stomatal closure response to high CO2 in wild-type Arabidopsis thaliana plants and in cases of pharmacological or genetic manipulation of network nodes. Our model has a 91% accuracy in capturing known experimental observations. We perform network-based logical analysis and reveal a feedback core of the network, which dictates cellular decisions in closure response to high CO2. Based on these analyses, we predict and experimentally confirm that applying nitric oxide (NO) induces stomatal closure in ambient CO2 and causes hypersensitivity to elevated CO2. Moreover, we predict a negative regulatory relationship between NO and the protein phosphatase ABI2 and find experimentally that NO inhibits ABI2 phosphatase activity. The experimental validation of these model predictions demonstrates the effectiveness of network-based modeling and highlights the decision-making role of the feedback core of the network in signal transduction. We further explore the model's potential in predicting targets of signaling elements not yet connected to the CO2 network. Our combination of network science, in silico model simulation, and experimental assays demonstrates an effective interdisciplinary approach to understanding system-level biology.


Asunto(s)
Arabidopsis , Dióxido de Carbono , Modelos Biológicos , Estomas de Plantas , Transducción de Señal , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/metabolismo , Estomas de Plantas/fisiología , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacología , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Simulación por Computador , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
2.
BMC Infect Dis ; 24(1): 581, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867163

RESUMEN

BACKGROUND: Several antifungal agents are available for primary therapy in patients with invasive aspergillosis (IA). Although a few studies have compared the effectiveness of different antifungal agents in treating IA, there has yet to be a definitive agreement on the best choice. Herein, we perform a network meta-analysis comparing the efficacy of different antifungal agents in IA. METHODS: We searched PubMed, Embase, and the Cochrane Central Register of Controlled Clinical Trials databases to find studies (both randomized controlled trials [RCTs] and observational) that reported on treatment outcomes with antifungal agents for patients with IA. The study quality was assessed using the revised tool for risk of bias and the Newcastle Ottawa scale, respectively. We performed a network meta-analysis (NMA) to summarize the evidence on antifungal agents' efficacy (favourable response and mortality). RESULTS: We found 12 studies (2428 patients) investigating 11 antifungal agents in the primary therapy of IA. There were 5 RCTs and 7 observational studies. When treated with monotherapy, isavuconazole was associated with the best probability of favourable response (SUCRA, 77.9%; mean rank, 3.2) and the best reduction mortality against IA (SUCRA, 69.1%; mean rank, 4.1), followed by voriconazole and posaconazole. When treated with combination therapy, Liposomal amphotericin B plus caspofungin was the therapy associated with the best probability of favourable response (SUCRA, 84.1%; mean rank, 2.6) and the best reduction mortality (SUCRA, 88.2%; mean rank, 2.2) against IA. CONCLUSION: These findings suggest that isavuconazole, voriconazole, and posaconazole may be the best antifungal agents as the primary therapy for IA. Liposomal amphotericin B plus caspofungin could be an alternative option.


Asunto(s)
Antifúngicos , Aspergilosis , Metaanálisis en Red , Antifúngicos/uso terapéutico , Humanos , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Resultado del Tratamiento , Caspofungina/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Infecciones Fúngicas Invasoras/tratamiento farmacológico , Triazoles/uso terapéutico , Anfotericina B/uso terapéutico , Voriconazol/uso terapéutico , Nitrilos , Piridinas
3.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33906951

RESUMEN

The COVID-19 pandemic has highlighted the need to quickly and reliably prioritize clinically approved compounds for their potential effectiveness for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Here, we deployed algorithms relying on artificial intelligence, network diffusion, and network proximity, tasking each of them to rank 6,340 drugs for their expected efficacy against SARS-CoV-2. To test the predictions, we used as ground truth 918 drugs experimentally screened in VeroE6 cells, as well as the list of drugs in clinical trials that capture the medical community's assessment of drugs with potential COVID-19 efficacy. We find that no single predictive algorithm offers consistently reliable outcomes across all datasets and metrics. This outcome prompted us to develop a multimodal technology that fuses the predictions of all algorithms, finding that a consensus among the different predictive methods consistently exceeds the performance of the best individual pipelines. We screened in human cells the top-ranked drugs, obtaining a 62% success rate, in contrast to the 0.8% hit rate of nonguided screenings. Of the six drugs that reduced viral infection, four could be directly repurposed to treat COVID-19, proposing novel treatments for COVID-19. We also found that 76 of the 77 drugs that successfully reduced viral infection do not bind the proteins targeted by SARS-CoV-2, indicating that these network drugs rely on network-based mechanisms that cannot be identified using docking-based strategies. These advances offer a methodological pathway to identify repurposable drugs for future pathogens and neglected diseases underserved by the costs and extended timeline of de novo drug development.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos/métodos , Biología de Sistemas/métodos , Animales , Antivirales/administración & dosificación , Antivirales/farmacología , Antivirales/uso terapéutico , Chlorocebus aethiops , Bases de Datos Farmacéuticas , Humanos , Redes Neurales de la Computación , Unión Proteica , Células Vero , Proteínas Virales/metabolismo
4.
Br J Cancer ; 128(5): 907-917, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36526676

RESUMEN

BACKGROUND: At present, the first-line treatment for advanced intrahepatic cholangiocarcinoma (ICC) is gemcitabine combined with cisplatin, but a considerable portion of ICC patients exhibit resistance to gemcitabine. Therefore, finding sensitisers for gemcitabine chemotherapy in ICC patients and predicting molecular markers for chemotherapy efficacy have become urgent needs. METHODS: In this study, PDX models were established to conduct gemcitabine susceptibility tests. The selected PDX tissues of the chemotherapy-sensitive group and drug-resistant group were subjected to transcriptome sequencing and protein chip technology to identify the key genes. Sixty-one ICC patients treated with gemcitabine chemotherapy were recruited for clinical follow-up validation. RESULTS: We found that thrombospondin-1 (TSP1) can predict gemcitabine chemosensitivity in ICC patients. The expression level of TSP1 could reflect the sensitivity of ICC patients to gemcitabine chemotherapy. Functional experiments further confirmed that TSP1 can increase the efficacy of gemcitabine chemotherapy for ICC. A mechanism study showed that TSP1 may affect the intake of oleic acid by binding to the CD36 receptor. CONCLUSIONS: In summary, we found a key molecule-TSP1-that can predict and improve the sensitivity of ICC patients to gemcitabine chemotherapy, which is of great significance for the treatment of advanced cholangiocarcinoma.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Gemcitabina , Desoxicitidina , Colangiocarcinoma/patología , Cisplatino , Biomarcadores , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/patología , Trombospondinas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
5.
Inflamm Res ; 72(4): 797-812, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36879064

RESUMEN

OBJECTIVES: Sterile inflammation of fetal membranes is an indispensable event of normal parturition. However, triggers of sterile inflammation are not fully resolved. Serum amyloid A1 (SAA1) is an acute phase protein produced primarily by the liver. Fetal membranes can also synthesize SAA1 but its functions are not well defined. Given the role of SAA1 in the acute phase response to inflammation, we postulated that SAA1 synthesized in the fetal membranes may be a trigger of local inflammation at parturition. METHODS: The changes of SAA1 abundance in parturition were studied in the amnion of human fetal membranes. The role of SAA1 in chemokine expression and leukocyte chemotaxis was examined in cultured human amnion tissue explants as well as primary human amnion fibroblasts. The effects of SAA1 on monocytes, macrophages and dendritic cells were investigated in cells derived from a human leukemia monocytic cell line (THP-1). RESULTS: SAA1 synthesis increased significantly in human amnion at parturition. SAA1 evoked multiple chemotaxis pathways in human amnion fibroblasts along with upregulation of a series of chemokines via both toll-like receptor 4 (TLR4) and formyl peptide receptor 2 (FPR2). Moreover, SAA1-conditioned medium of cultured amnion fibroblasts was capable of chemoattracting virtually all types of mononuclear leukocytes, particularly monocytes and dendritic cells, which reconciled with the chemotactic activity of conditioned medium of cultured amnion tissue explants collected from spontaneous labor. Furthermore, SAA1 could induce the expression of genes associated with inflammation and extracellular matrix remodeling in monocytes, macrophages and dendritic cells derived from THP-1. CONCLUSIONS: SAA1 is a trigger of sterile inflammation of the fetal membranes at parturition.


Asunto(s)
Amnios , Parto , Embarazo , Femenino , Humanos , Amnios/metabolismo , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Parto/genética , Parto/metabolismo , Membranas Extraembrionarias/metabolismo , Quimiocinas/metabolismo , Inflamación/metabolismo , Proteína Amiloide A Sérica
6.
BMC Cardiovasc Disord ; 23(1): 18, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639616

RESUMEN

BACKGROUND: Early exercise for acute deep venous thrombosis (DVT) improves the patient's symptoms and does not increase the risk of pulmonary embolism. However, information about its effect on thrombus resolution is limited. The aim of this study was to investigate the role of resistance exercise (RE) in thrombus resolution and recanalization and determine its underlying mechanisms.  METHODS: Ninety-six C57BL/6 J mice were randomly divided into four groups: Control group (C, n = 24); DVT group (D, n = 24); RE + DVT group (ED, n = 24); and inhibitor + RE + DVT group (IED, n = 24). A DVT model was induced by stenosis of the inferior vena cava (IVC). After undergoing IVC ultrasound within 24 h post-operation to confirm DVT formation, mice without thrombosis were excluded. Other mice were sacrificed and specimens were obtained 14 or 28 days after operation. Thrombus-containing IVC was weighed, and the thrombus area and recanalization rate were calculated using HE staining. Masson's trichrome staining was used to analyze the collagen content. RT-PCR and ELISA were performed to examine IL-6, TNF-α, IL-10, and VEGF expression levels. SIRT1 expression was assessed using immunohistochemistry staining and RT-PCR. VEGF-A protein expression and CD-31-positive microvascular density (MVD) in the thrombus were observed using immunohistochemistry.  RESULTS: RE did not increase the incidence of pulmonary embolism. It reduced the weight and size of the thrombus and the collagen content. Conversely, it increased the recanalization rate. It also decreased the levels of the pro-inflammatory factors IL-6 and TNF-α and increased the expression levels of the anti-inflammatory factor IL-10. RE enhanced VEGF and SIRT1 expression levels and increased the MVD in the thrombosis area. After EX527 (SIRT1 inhibitor) was applied, the positive effects of exercise were suppressed. CONCLUSIONS: RE can inhibit inflammatory responses, reduce collagen deposition, and increase angiogenesis in DVT mice, thereby promoting thrombus resolution and recanalization. Its underlying mechanism may be associated with the upregulation of SIRT1 expression.


Asunto(s)
Condicionamiento Físico Animal , Embolia Pulmonar , Entrenamiento de Fuerza , Trombosis de la Vena , Animales , Humanos , Ratones , Colágeno/metabolismo , Modelos Animales de Enfermedad , Interleucina-10 , Interleucina-6/metabolismo , Ratones Endogámicos C57BL , Embolia Pulmonar/complicaciones , Sirtuina 1/genética , Sirtuina 1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/metabolismo , Trombosis de la Vena/diagnóstico por imagen , Trombosis de la Vena/terapia , Trombosis de la Vena/etiología
7.
Hepatobiliary Pancreat Dis Int ; 22(1): 72-80, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35428596

RESUMEN

BACKGROUND: Early singular nodular hepatocellular carcinoma (HCC) is an ideal surgical indication in clinical practice. However, almost half of the patients have tumor recurrence, and there is no reliable prognostic prediction tool. Besides, it is unclear whether preoperative neoadjuvant therapy is necessary for patients with early singular nodular HCC and which patient needs it. It is critical to identify the patients with high risk of recurrence and to treat these patients preoperatively with neoadjuvant therapy and thus, to improve the outcomes of these patients. The present study aimed to develop two prognostic models to preoperatively predict the recurrence-free survival (RFS) and overall survival (OS) in patients with singular nodular HCC by integrating the clinical data and radiological features. METHODS: We retrospective recruited 211 patients with singular nodular HCC from December 2009 to January 2019 at Eastern Hepatobiliary Surgery Hospital (EHBH). They all met the surgical indications and underwent radical resection. We randomly divided the patients into the training cohort (n =132) and the validation cohort (n = 79). We established and validated multivariate Cox proportional hazard models by the preoperative clinicopathologic factors and radiological features for association with RFS and OS. By analyzing the receiver operating characteristic (ROC) curve, the discrimination accuracy of the models was compared with that of the traditional predictive models. RESULTS: Our RFS model was based on HBV-DNA score, cirrhosis, tumor diameter and tumor capsule in imaging. RFS nomogram had fine calibration and discrimination capabilities, with a C-index of 0.74 (95% CI: 0.68-0.80). The OS nomogram, based on cirrhosis, tumor diameter and tumor capsule in imaging, had fine calibration and discrimination capabilities, with a C-index of 0.81 (95% CI: 0.74-0.87). The area under the receiver operating characteristic curve (AUC) of our model was larger than that of traditional liver cancer staging system, Korea model and Nomograms in Hepatectomy Patients with Hepatitis B Virus-Related Hepatocellular Carcinoma, indicating better discrimination capability. According to the models, we fitted the linear prediction equations. These results were validated in the validation cohort. CONCLUSIONS: Compared with previous radiography model, the new-developed predictive model was concise and applicable to predict the postoperative survival of patients with singular nodular HCC. Our models may preoperatively identify patients with high risk of recurrence. These patients may benefit from neoadjuvant therapy which may improve the patients' outcomes.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/cirugía , Pronóstico , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/cirugía , Estudios Retrospectivos , Recurrencia Local de Neoplasia/cirugía , Nomogramas , Hepatectomía/métodos , Radiografía
8.
Zhongguo Zhong Yao Za Zhi ; 48(12): 3132-3139, 2023 Jun.
Artículo en Zh | MEDLINE | ID: mdl-37381995

RESUMEN

Strigolactones(SLs) are a class of sesquiterpenoids derived from the carotenoid biosynthesis pathway with the core carbon skeleton consisting of tricyclic lactone(ABC tricyclic ring) and α,ß-unsaturated furan ring(D ring). SLs are widely distributed in higher plants and are symbiotic signals between plants and Arbuscular mycorrhiza(AM), which play key roles in the evolution of plant colonizing terrestrial habitats. As a new type of plant hormone, SLs possess such important biological functions as inhibiting shoot branching(tillers), regulating root architecture, promoting secondary growth, and improving plant stress resistance. Therefore, SLs have attracted wide attention. The biological functions of SLs are not only closely related to the formation of "excellent shape and quality" of Chinese medicinal materials but also have important practical significance for the production of high-quality medicinal materials. However, SLs have been currently widely studied in model plants and crops such as Oryza sativa and Arabidopsis thaliana, and few related studies have been reported on SLs in medicinal plants, which need to be strengthened. This review focused on the latest research progress in the isolation and identification, biological and artificial synthesis pathways, biosynthesis sites and transport modes, signal transduction pathways and mechanisms, and biological functions of SLs, and prospected the research on the regulation mechanism of SLs in the growth and development of medicinal plants and their related application on targeted regulation of Chinese herbal medicine production, which is expected to provide some references for the in-depth research on SLs in the field of Chinese medicinal resources.


Asunto(s)
Arabidopsis , Plantas Medicinales , Lactonas
9.
BMC Med ; 20(1): 189, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35610640

RESUMEN

BACKGROUND: Enhancer of zeste homolog 2 (EZH2)-mediated histone 3 lysine 27 trimethylation (H3K27me3) is a transcription silencing mark, which is indispensable for cell lineage specification at the early blastocyst stage. This epigenetic repression is maintained in placental cytotrophoblasts but is lifted when cytotrophoblasts differentiate into syncytiotrophoblasts. However, the physiological impact of this lift remains elusive. Here, we investigated whether lifting EZH2-mediated H3K27me3 during syncytialization upregulates the expression of a short secretory isoform of a disintegrin and metalloprotease 12 (ADAM12-S), a well-recognized placenta-derived protease that cleaves insulin-like growth factor binding protein 3 to increase insulin-like growth factor (IGF) bioavailability for the stimulation of fetoplacental growth. The transcription factor and the upstream signal involved were also explored. METHODS: Human placenta tissue and cultured primary human placental cytotrophoblasts were utilized to investigate the role of EZH2-mediated H3K27me3 in ADAM12-S expression and the associated transcription factor and upstream signal during syncytialization. A mouse model was used to examine whether inhibition of EZH2-mediated H3K27me3 regulates placental ADAM12-S expression and fetoplacental growth. RESULTS: EZH2 and ADAM12 are distributed primarily in villous cytotrophoblasts and syncytiotrophoblasts, respectively. Increased ADAM12-S expression, decreased EZH2 expression, and decreased EZH2/H3K27me3 enrichment at the ADAM12 promoter were observed during syncytialization. Knock-down of EZH2 further increased ADAM12-S expression in trophoblasts. Syncytialization was also accompanied by increased STAT5B expression and phosphorylation as well as its enrichment at the ADAM12 promoter. Knock-down of STAT5B attenuated ADAM12-S expression during syncytialization. Epidermal growth factor (EGF) was capable of inducing ADAM12-S expression via stimulation of STAT5B expression and phosphorylation during syncytialization. Mouse studies revealed that administration of an EZH2 inhibitor significantly increased ADAM12-S levels in maternal blood and fetoplacental weights along with decreased H3K27me3 abundance and increased ADAM12-S expression in the placenta. CONCLUSIONS: Lifting EZH2-mediated H3K27me3 increases ADAM12-S expression during syncytialization with the participation of EGF-activated STAT5B, which may lead to elevation of ADAM12-S level in maternal blood resulting in increased IGF bioavailability for the stimulation of fetoplacental growth in pregnancy. Our studies suggest that the role of EZH2-mediated H3K27me3 may switch from cell lineage specification at the early blastocyst stage to regulation of fetoplacental growth in later gestation.


Asunto(s)
Proteína ADAM12 , Proteína Potenciadora del Homólogo Zeste 2 , Histonas , Placenta , Proteína ADAM12/biosíntesis , Proteína ADAM12/genética , Proteína ADAM12/metabolismo , Animales , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Femenino , Desarrollo Fetal , Histonas/metabolismo , Ratones , Placenta/metabolismo , Placentación , Embarazo , Transducción de Señal
10.
Parasitology ; 148(2): 234-239, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33004092

RESUMEN

Serological tests may yield false-negative results for specific antibodies detection before or at the early seroconversion phase. Tests that detect circulating antigens of Angiostrongylus cantonensis would therefore be of value in diagnosis to distinguish current or past infection. Here, a quick, easy to perform, portable and inexpensive diagnostic device for detection of 31-kDa A. cantonensis specific antigens had been developed. This sandwich dot-immunogold filtration assay (AcDIGFAAg), for detecting active angiostrongyliasis was produced using anti-A. cantonensis polyclonal antibody dotted on the nitrocellulose membrane as a capture agent and colloidal gold-labelled anti-31 kDa A. cantonensis antibody as a detection agent. A well-defined pink dot, indicating positivity, was seen readily by naked eye within 10-15 min. The AcDIGFAAg detected A. cantonensis-specific antigens in cerebrospinal fluid samples from 4 out of 10 serologically confirmed angiostrongyliasis cases and 2 out of 5 suspected cases with negative anti-A. cantonensis antibodies. Among the 19 patient sera with A. cantonensis infection, 2 showed positive reaction by AcDIGFAAg. No positive AcDIGFAAg reaction was observed in all the serum samples with other parasitic diseases, and the healthy controls. The present 'AcDIGFAAg' enables rapid qualitative detection of the specific 31-kDa antigens of A. cantonensis in clinical samples with potential for application even under resource-limited settings.


Asunto(s)
Inmunohistoquímica/métodos , Infecciones por Strongylida/diagnóstico , Angiostrongylus cantonensis/aislamiento & purificación , Animales , Humanos , Parasitología/métodos , Infecciones por Strongylida/parasitología
11.
BMC Cardiovasc Disord ; 21(1): 440, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34530722

RESUMEN

BACKGROUND: MiR-92a-3p and oxidative stress are associated with catheter-related thrombosis (CRT). As a kind of physical intervention, resistance exercise can effectively promote blood circulation. In this study, we investigated the roles of miR-92a-3p, oxidative stress and the P38 mitogen-activated protein kinase/nuclear factor-κB (MAPK/NF-κB) pathway in CRT during resistance exercise. METHODS: The rat CRT model was used for resistance exercise intervention. Moreover, pathological changes from the right jugular vein to the right auricle were observed under an electron microscope. In addition, reactive oxygen species (ROS) production, malondialdehyde (MDA) activity and heme oxygenase (HO-1) level in rat serum were detected via ELISA. The expression levels of miR-92A-3p and HO-1 in the vascular tissues of the rats were determined via real-time quantitative PCR. Additionally, the expression levels of HO-1, NF-κB P65, p38MAPK and IκBa in the venous tissues of the rats were analysed by Western blot analysis. RESULTS: The pathological results showed that the thrombosis incidence rate in the CRT + RE group was lower than that in the CRT group. In the CRT group, the expression levels of ROS and MDA, which are markers related to oxidative stress in serum, significantly increased whilst the expression of HO-1 decreased. In the venous tissue, the expression of miR-92a-3p increased, the level of HO-1 decreased, the levels of p38MAPK and NF-κB p65 significantly increased but that of P-IκBa and IκBa significantly decreased. In the CRT + RE group, after administering the resistance exercise intervention, ROS production and MDA activity in serum significantly decreased, the expression level of HO-1 increased and the expression level of miR-92a-3p in the venous tissues significantly decreased and was negatively correlated with that of HO-1. The levels of p38MAPK and NF-κB p65 significantly decreased but that of P- IκBa and IκBa significantly increased. CONCLUSION: Resistance exercise intervention downregulated miR-92a-3p expression, repaired oxidative stress injury and prevented CRT formation.


Asunto(s)
Coagulación Sanguínea , Cateterismo Venoso Central/efectos adversos , Venas Yugulares/enzimología , MicroARNs/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Entrenamiento de Fuerza , Lesiones del Sistema Vascular/terapia , Trombosis de la Vena/prevención & control , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Modelos Animales de Enfermedad , Hemo Oxigenasa (Desciclizante)/genética , Hemo Oxigenasa (Desciclizante)/metabolismo , Venas Yugulares/lesiones , Venas Yugulares/patología , Masculino , MicroARNs/genética , Ratas Sprague-Dawley , Transducción de Señal , Lesiones del Sistema Vascular/enzimología , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/patología , Trombosis de la Vena/sangre , Trombosis de la Vena/enzimología , Trombosis de la Vena/genética
12.
Cell Biochem Funct ; 39(2): 317-325, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32881051

RESUMEN

Thyroid cancer is the most common endocrine carcinoma, with papillary thyroid carcinoma (PTC) accounting for 80%-90% of thyroid cancers. Accumulating studies reported that mitochondria plays an important role in the regulation of cell proliferation. ALDH5A1, may function as an oncogene or tumour suppressor in various human cancers, and the role of ALDH5A1 in PTC is still unclear. The aim of this study was to investigate the clinical significance of ALDH5A1 expression and its functions in PTC. In this present study, we studied ALDH5A1 expression on primary papillary thyroid carcinoma (PTC) in The Cancer Genome Atlas (TCGA) database. Results showed that the levels of ALDH5A1 were found positively correlated with tumour stage, metastasis, lymph node stage, and higher levels of ALDH5A1 demonstrated poor disease-free survival (DFS). Immunohistochemistry (IHC) revealed that significantly higher expression of ALDH5A1 was found in PTC tissues. On the other hand, knockdown of ALDH5A1 significantly inhibited PTC cell proliferation, migration and invasion detection found the migration and invasion of cells also were hindered when ALDH5A1 level was reduced. The knockdown of ALDH5A1 inhibited the expression of Vimentin and promoted the expression of E-cadherin. In brief, knockdown of ALDH5A1may act as a novel molecular target for the prevention and treatment of PTC. SIGNIFICANCE OF THE STUDY: The present study focused on the role and the potential mechanism of ALDH5A1 in papillary thyroid carcinoma. We demonstrated that reduced expression of ALDH5A1 might inhibit the progression of TC by inhibiting cell proliferation, migration and invasion and reversing epithelial-mesenchymal transition (EMT). The findings ensured the interaction relation between ALDH5A1 and EMT in PTC, providing a novel biological marker for PTC and enriching the potential strategies for TC treatment.


Asunto(s)
Succionato-Semialdehído Deshidrogenasa/metabolismo , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/patología , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia sin Enfermedad , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Masculino , Estadificación de Neoplasias , Pronóstico , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Succionato-Semialdehído Deshidrogenasa/antagonistas & inhibidores , Succionato-Semialdehído Deshidrogenasa/genética , Cáncer Papilar Tiroideo/metabolismo , Cáncer Papilar Tiroideo/mortalidad , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/mortalidad , Vimentina/metabolismo
13.
Food Microbiol ; 93: 103605, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32912580

RESUMEN

This work aimed to determine the effects of partial substitution of NaCl with 0% (control), 30%, 50%, and 70% of KCl on the bacterial communities, proteolysis and lipid oxidation of Chinese bacon during processing. The proportion of genus Lactobacillus increased from 22.45% (fresh meat) to 72.78%, 81.64%, 76.53% and 85.63% at the end of processing for 0%, 30%, 50% and 70% KCl replacement samples, respectively. During the processing, Lactobacillus gradually became the dominant one, and higher the KCl ratio, more rapid was the process. After salting, the TBARS of control was markedly higher (P < 0.05) than that of the others, while a similar lipid oxidation level (P > 0.05) was observed at the end of processing for different groups. After salting, there was no difference in total free amino acids (TFAA) content among four treatments (P > 0.05), whereas KCl replacement samples shared significantly higher (P < 0.05) values than control at the end of processing. Redundancy analysis and Pearson correlation showed positive correlation between Lactobacillus versus TBARS and TFAA. Partial replacement of NaCl with KCl could, directly or subsequently by promoting the growth of Lactobacillus, influence proteolysis and lipid oxidation over the manufacturing process.


Asunto(s)
Microbiota/efectos de los fármacos , Carne de Cerdo/microbiología , Cloruro de Potasio/farmacología , Cloruro de Sodio/farmacología , Pueblo Asiatico , ADN Bacteriano , Conservación de Alimentos , Humanos , Carne/análisis , Productos de la Carne/microbiología , Oxidación-Reducción , Proteolisis
14.
Korean J Parasitol ; 59(3): 257-263, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34218597

RESUMEN

Human gnathostomiasis is a parasitic disease caused by Gnathostoma nematode infection. A rapid, reliable, and practical immunoassay, named dot immuno-gold filtration assay (DIGFA), was developed to supporting clinical diagnosis of gnathostomiasis. The practical tool detected anti-Gnathostoma-specific IgG4 in human serum using crude extract of third-stage larvae as antigen. The result of the test was shown by anti-human IgG4 monoclonal antibody conjugated colloidal gold. The sensitivity and specificity of the test were both 100% for detection in human sera from patients with gnathostomiasis (13/13) and from healthy negative controls (50/50), respectively. Cross-reactivity with heterogonous serum samples from patients with other helminthiases ranged from 0 (trichinosis, paragonimiasis, clonorchiasis, schistosomiasis, and cysticercosis) to 25.0% (sparganosis), with an average of 6.3% (7/112). Moreover, specific IgG4 antibodies diminished at 6 months after treatment. This study showed that DIGFA for the detection of specific IgG4 in human sera could be a promising tool for the diagnosis of gnathostomiasis and useful for evaluating therapeutic effects.


Asunto(s)
Gnathostoma , Gnathostomiasis , Paragonimiasis , Animales , Anticuerpos Antihelmínticos , Gnathostomiasis/diagnóstico , Humanos , Inmunoglobulina G
15.
FASEB J ; 33(7): 8148-8160, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30917001

RESUMEN

Human amnion fibroblasts produce abundant prostaglandin E2 (PGE2), which plays a crucial role in parturition by stimulating not only myometrial contraction and cervical ripening but also the expression of the rate-limiting enzyme in PGE2 synthesis-namely, cyclooxygenase-2 (COX-2). This feed-forward induction of COX-2 expression by PGE2 is mediated via its receptors coupled with the cAMP and PKA pathway and subsequent phosphorylation of the transcription factors cAMP-response element binding protein (CREB) and signal transducer and activator of transcription 3 (STAT3). Although prostaglandin E receptor (EP)-2 and EP4 for PGE2 are coupled with activation of the cAMP and PKA pathway, the exact roles of these 2 receptors in the regulation of COX-2 expression in amnion fibroblasts remain to be determined. Here, we clarify this issue by employing human amnion tissue and fibroblasts with the long-term objective of specific targeting of prostaglandin synthesis in prevention of preterm birth. We find that an EP2 agonist caused long-lasting increases in CREB phosphorylation and COX-2 expression, whereas an EP4 agonist induced only transient increases in CREB phosphorylation and COX-2 expression in amnion fibroblasts. Moreover, only EP2 stimulation increased STAT3 phosphorylation, whereas only EP4 stimulation increased PI3K activity. EP4 antagonist or inhibition of PI3K enhanced the induction of CREB and STAT3 phosphorylation and COX-2 expression by PGE2 or EP2 stimulation, which was attenuated by EP4 overexpression. Of interest, PGE2 and cortisol, both well-demonstrated stimulants of COX-2 expression in amnion fibroblasts, increased EP2 but decreased EP4 receptor expression. Furthermore, increased EP2 but decreased EP4 abundance were observed in amnion tissue at parturition. We conclude that EP2 and EP4 receptors play different roles in the regulation of COX-2 expression in human amnion fibroblasts. EP2 is the dominant PGE2 receptor mediating the induction of COX-2 at parturition, which can be attenuated by simultaneous activation of PI3K coupled to the EP4 receptor.-Lu, J.-W., Wang, W.-S., Zhou, Q., Gan, X.-W., Myatt, L., Sun, K. Activation of prostaglandin EP4 receptor attenuates the induction of cyclooxygenase-2 expression by EP2 receptor activation in human amnion fibroblasts: implications for parturition.


Asunto(s)
Amnios/metabolismo , Ciclooxigenasa 2/biosíntesis , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Parto , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Femenino , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Embarazo , Nacimiento Prematuro/metabolismo , Factor de Transcripción STAT3/metabolismo
16.
J Fluoresc ; 30(6): 1365-1374, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32897496

RESUMEN

Two new Zn(II)-based coordination polymers {[Zn3(L1)6(H2O)]∙(H2O)4}n (1, HL1 = 4-(tetrazol-5-yl)phenyl-4,2':6',4″-terpyridine) and [Zn2Cl2(L2)2H2O]n (2, HL2 = 4-([2,2':6',2″'-terpyridin]-4'-yl)benzoic acid) have been successfully prepared using two similar organic ligands with distinct donor groups under similar reaction conditions. The distinct structural features and donor atoms make the two complexes show different water stability, and the complex 1 with good water stability, which can be utilized as the sensor for Fe3+ ion detection in water. The value of Stern-Volmer quenching constant of 1 to the Fe3+ is 5.77 × 104 M- 1, which lies in the top region of the reported CP-based sensors. The mechanism investigation reveals that the energy transfer of resonance from the complex 1 to the Fe3+ ion can account for its fluorescent quenching behavior. The treatment activity of compounds 1 and 2 on the postpartum hemorrhage (PPH) was assessed. First, the cytotoxicity of compounds 1 and 2 on human umbilical vein endothelial cells was assessed with Cell Counting Kit-8 detection kit. Then, to evaluate the prevention of compounds 1 and 2 on the PPH, we conducted the Lowry method and detected the clotting factor IX and anticoagulant factor III contents after the indicated treatment. Finally, the inflammatory response in mice was determined by ELISA method, and the IL-6 and IL-8 levels were determined.


Asunto(s)
Anticoagulantes/química , Anticoagulantes/farmacología , Hierro/química , Polímeros/química , Hemorragia Posparto/prevención & control , Zinc/química , Ácido Benzoico/química , Estabilidad de Medicamentos , Fibrinógeno/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Ligandos , Hemorragia Posparto/metabolismo , Agua/química
17.
BMC Cardiovasc Disord ; 20(1): 150, 2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32228467

RESUMEN

BACKGROUND: miR-92a-3p and oxidative stress are reportedly associated with venous thrombosis. However, the role of miR-92a-3p and oxidative stress in catheter-related thrombosis (CRT) remains ambiguous. Herein, we studied the roles of miR-92a-3p, oxidative stress, and p38-mitogen-activated protein kinase/nuclear factor kappa-B (MAPK/NF-κB) pathway in CRT. METHODS: Forty-five male rats were randomly and equally divided into control, sham operation, and CRT groups. The rats were sacrificed after 10 days. Reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) levels in the serum were determined by enzyme-linked immunosorbent assay (ELISA). The expression levels of miR-92a-3p, heme oxygenase-1 (HO-1), NF-κB p65, and p38 MAPK in the venous tissues were detected with quantitative polymerase chain reaction (qPCR) and Western blot. RESULTS: Thrombosis was observed only in the CRT group. Compared with the levels in the control and sham operation groups, ROS and MDA significantly increased in the CRT group, but SOD significantly decreased. qPCR and Western blot results showed that miR-92a-3p, HO-1, p38 MAPK, and NF-κB p65 expression was significantly upregulated in the venous tissues of the CRT group. Moreover, miR-92a-3p was positively correlated with HO-1, which was positively correlated with p38 MAPK and NF-κB p65. CONCLUSION: miR-92a-3p was correlated with oxidative stress in CRT. miR-92a-3p and oxidative stress contributed to endothelial dysfunction and simultaneously was associated with CRT.


Asunto(s)
Cateterismo Venoso Central/instrumentación , Catéteres de Permanencia , Catéteres Venosos Centrales , Venas Yugulares/enzimología , MicroARNs/metabolismo , FN-kappa B , Estrés Oxidativo , Trombosis de la Vena/enzimología , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Modelos Animales de Enfermedad , Hemo Oxigenasa (Desciclizante)/metabolismo , Venas Yugulares/patología , Masculino , MicroARNs/genética , Ratas Sprague-Dawley , Transducción de Señal , Trombosis de la Vena/etiología , Trombosis de la Vena/genética , Trombosis de la Vena/patología
18.
J Nat Prod ; 82(1): 45-50, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30629435

RESUMEN

Two new Tricholoma terpenoids, tricholopardins A and B, were isolated from the fruiting bodies of the basidiomycetes Tricholoma pardinum. Their structures were elucidated by spectroscopic methods, as well as electronic circular dichroism and optical rotatory dispersion calculations. Tricholopardin A potently inhibited nitric oxide production in lipopolysaccharide-induced RAW264.7 macrophages with an IC50 of 0.08 µM. Its anti-inflammatory effects on three inflammatory mediators were also evaluated. A plausible biosynthetic pathway for these products is discussed.


Asunto(s)
Antiinflamatorios/aislamiento & purificación , Cuerpos Fructíferos de los Hongos/metabolismo , Terpenos/aislamiento & purificación , Tricholoma/metabolismo , Animales , Humanos , Espectroscopía de Resonancia Magnética , Ratones , Óxido Nítrico/biosíntesis , Células RAW 264.7 , Células THP-1 , Terpenos/química , Terpenos/farmacología
19.
Tumour Biol ; 39(5): 1010428317705755, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28488527

RESUMEN

The role and mechanism of miR-452-5p in lung adenocarcinoma remain unclear. In this study, we performed a systematic study to investigate the clinical value of miR-452-5p expression in lung adenocarcinoma. The expression of miR-452-5p in 101 lung adenocarcinoma patients was detected by quantitative real-time polymerase chain reaction. The Cancer Genome Atlas and Gene Expression Omnibus databases were joined to verify the expression level of miR-452-5p in lung adenocarcinoma. Via several online prediction databases and bioinformatics software, pathway and network analyses of miR-452-5p target genes were performed to explore its prospective molecular mechanism. The expression of miR-452-5p in lung adenocarcinoma in house was significantly lower than that in adjacent tissues (p < 0.001). Additionally, the expression level of miR-452-5p was negatively correlated with several clinicopathological parameters including the tumor size (p = 0.014), lymph node metastasis (p = 0.032), and tumor-node-metastasis stage (p = 0.036). Data from The Cancer Genome Atlas also confirmed the low expression of miR-452 in lung adenocarcinoma (p < 0.001). Furthermore, reduced expression of miR-452-5p in lung adenocarcinoma (standard mean deviations = -0.393, 95% confidence interval: -0.774 to -0.011, p = 0.044) was validated by a meta-analysis. Five hub genes targeted by miR-452-5p, including SMAD family member 4, SMAD family member 2, cyclin-dependent kinase inhibitor 1B, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon, and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein beta, were significantly enriched in the cell-cycle pathway. In conclusion, low expression of miR-452-5p tends to play an essential role in lung adenocarcinoma. Bioinformatics analysis might be beneficial to reveal the potential mechanism of miR-452-5p in lung adenocarcinoma.


Asunto(s)
Adenocarcinoma/genética , Biomarcadores de Tumor/genética , Neoplasias Pulmonares/genética , MicroARNs/genética , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/biosíntesis , Ciclo Celular/genética , Biología Computacional , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , Masculino , MicroARNs/biosíntesis , Persona de Mediana Edad , Proteínas Smad/genética
20.
Cancer Cell Int ; 16: 89, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27980454

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) are related to different biological processes in non-small cell lung cancer (NSCLC). However, the possible molecular mechanisms underlying the effects of the long noncoding RNA HOXA11-AS (HOXA11 antisense RNA) in NSCLC are unknown. METHODS: HOXA11-AS was knocked down in the NSCLC A549 cell line and a high throughput microarray assay was applied to detect changes in the gene profiles of the A549 cells. Bioinformatics analyses (gene ontology (GO), pathway, Kyoto Encyclopedia of Genes and Genomes (KEGG), and network analyses) were performed to investigate the potential pathways and networks of the differentially expressed genes. The molecular signatures database (MSigDB) was used to display the expression profiles of these differentially expressed genes. Furthermore, the relationships between the HOXA11-AS, de-regulated genes and clinical NSCLC parameters were verified by using NSCLC patient information from The Cancer Genome Atlas (TCGA) database. In addition, the relationship between HOXA11-AS expression and clinical diagnostic value was analyzed by receiver operating characteristic (ROC) curve. RESULTS: Among the differentially expressed genes, 277 and 80 genes were upregulated and downregulated in NSCLC, respectively (fold change ≥2.0, P < 0.05 and false discovery rate (FDR) < 0.05). According to the degree of the fold change, six upregulated and three downregulated genes were selected for further investigation. Only four genes (RSPO3, ADAMTS8, DMBT1, and DOCK8) were reported to be related with the development or progression of NSCLC based on a PubMed search. Among all possible pathways, three pathways (the PI3K-Akt, TGF-beta and Hippo signaling pathways) were the most likely to be involved in NSCLC development and progression. Furthermore, we found that HOXA11-AS was highly expressed in both lung adenocarcinoma and squamous cell carcinoma based on TCGA database. The ROC curve showed that the area under curve (AUC) of HOXA11-AS was 0.727 (95% CI 0.663-0.790) for lung adenocarcinoma and 0.933 (95% CI 0.906-0.960) for squamous cell carcinoma patients. Additionally, the original data from TCGA verified that ADAMTS8, DMBT1 and DOCK8 were downregulated in both lung adenocarcinoma and squamous cell carcinoma, whereas RSPO3 expression was upregulated in lung adenocarcinoma and downregulated in lung squamous cell carcinoma. For the other five genes (STMN2, SPINK6, TUSC3, LOC100128054, and C8orf22), we found that STMN2, TUSC3 and C8orf22 were upregulated in squamous cell carcinoma and that STMN2 and USC3 were upregulated in lung adenocarcinoma. Furthermore, we compared the correlation between HOXA11-AS and de-regulated genes in NSCLC based on TCGA. The results showed that the HOXA11-AS expression was negatively correlated with DOCK8 in squamous cell carcinoma (r = -0.124, P = 0.048) and lung adenocarcinoma (r = -0.176, P = 0.005). In addition, RSPO3, ADAMTS8 and DOCK8 were related to overall survival and disease-free survival (all P < 0.05) of lung adenocarcinoma patients in TCGA. CONCLUSIONS: Our results showed that the gene profiles were significantly changed after HOXA11-AS knock-down in NSCLC cells. We speculated that HOXA11-AS may play an important role in NSCLC development and progression by regulating the expression of various pathways and genes, especially DOCK8 and TGF-beta pathway. However, the exact mechanism should be verified by functional experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA