Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neuroinflammation ; 19(1): 152, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705957

RESUMEN

BACKGROUND: Inflammation is a potential risk factor of mental disturbance. FKBP5 that encodes FK506-binding protein 51 (FKBP51), a negative cochaperone of glucocorticoid receptor (GR), is a stress-inducible gene and has been linked to psychiatric disorders. Yet, the role of FKBP51 in the inflammatory stress-associated mental disturbance remained unclear. METHODS: Fkbp5-deficient (Fkbp5-KO) mice were used to study inflammatory stress by a single intraperitoneal injection of lipopolysaccharide (LPS). The anxiety-like behaviors, neuroimaging, immunofluorescence staining, immunohistochemistry, protein and mRNA expression analysis of inflammation- and neurotransmission-related mediators were evaluated. A dexamethasone drinking model was also applied to examine the effect of Fkbp5-KO in glucocorticoid-induced stress. RESULTS: LPS administration induced FKBP51 elevation in the liver and hippocampus accompanied with transient sickness. Notably, Fkbp5-KO but not wild-type (WT) mice showed anxiety-like behaviors 7 days after LPS injection (LPS-D7). LPS challenge rapidly increased peripheral and central immune responses and hippocampal microglial activation followed by a delayed GR upregulation on LPS-D7, and these effects were attenuated in Fkbp5-KO mice. Whole-brain [18F]-FEPPA neuroimaging, which target translocator protein (TSPO) to indicate neuroinflammation, showed that Fkbp5-KO reduced LPS-induced neuroinflammation in various brain regions including hippocampus. Interestingly, LPS elevated glutamic acid decarboxylase 65 (GAD65), the membrane-associated GABA-synthesizing enzyme, in the hippocampus of WT but not Fkbp5-KO mice on LPS-D7. This FKBP51-dependent GAD65 upregulation was observed in the ventral hippocampal CA1 accompanied by the reduction of c-Fos-indicated neuronal activity, whereas both GAD65 and neuronal activity were reduced in dorsal CA1 in a FKBP51-independent manner. GC-induced anxiety was also examined, which was attenuated in Fkbp5-KO and hippocampal GAD65 expression was unaffected. CONCLUSIONS: These results suggest that FKBP51/FKBP5 is involved in the systemic inflammation-induced neuroinflammation and hippocampal GR activation, which may contribute to the enhancement of GAD65 expression for GABA synthesis in the ventral hippocampus, thereby facilitating resilience to inflammation-induced anxiety.


Asunto(s)
Ansiedad/metabolismo , Glutamato Descarboxilasa/metabolismo , Lipopolisacáridos , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Ansiedad/patología , Glucocorticoides/farmacología , Glutamato Descarboxilasa/genética , Hipocampo/metabolismo , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Ratones , Receptores de GABA/metabolismo , Receptores de Glucocorticoides/metabolismo , Proteínas de Unión a Tacrolimus/genética , Ácido gamma-Aminobutírico/metabolismo
2.
Glia ; 63(7): 1138-54, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25690886

RESUMEN

The aryl hydrocarbon receptor (AhR) regulates peripheral immunity; but its role in microglia-mediated neuroinflammation in the brain remains unknown. Here, we demonstrate that AhR mediates both anti-inflammatory and proinflammatory effects in lipopolysaccharide (LPS)-activated microglia. Activation of AhR by its ligands, formylindolo[3,2-b]carbazole (FICZ) or 3-methylcholanthrene (3MC), attenuated LPS-induced microglial immune responses. AhR also showed proinflammatory effects, as evidenced by the findings that genetic silence of AhR ameliorated the LPS-induced microglial immune responses and LPS-activated microglia-mediated neurotoxicity. Similarly, LPS-induced expressions of tumor necrosis factor α (TNFα) and inducible nitric oxide synthase (iNOS) were reduced in the cerebral cortex of AhR-deficient mice. Intriguingly, LPS upregulated and activated AhR in the absence of AhR ligands via the MEK1/2 signaling pathway, which effects were associated with a transient inhibition of cytochrome P450 1A1 (CYP1A1). Although AhR ligands synergistically enhance LPS-induced AhR activation, leading to suppression of LPS-induced microglial immune responses, they cannot do so on their own in microglia. Chromatin immunoprecipitation results further revealed that LPS-FICZ co-treatment, but not LPS alone, not only resulted in co-recruitment of both AhR and NFκB onto the κB site of TNFα gene promoter but also reduced LPS-induced AhR binding to the DRE site of iNOS gene promoter. Together, we provide evidence showing that microglial AhR, which can be activated by LPS, exerts bi-directional effects on the regulation of LPS-induced neuroinflammation, depending on the availability of external AhR ligands. These findings confer further insights into the potential link between environmental factors and the inflammatory brain disorders.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Microglía/fisiología , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Muerte Celular/fisiología , Línea Celular , Células Cultivadas , Corteza Cerebral/inmunología , Cromatina/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Técnicas de Silenciamiento del Gen , Lipopolisacáridos , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 2/metabolismo , Ratones Endogámicos BALB C , Ratones Noqueados , Neuronas/fisiología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Receptores de Hidrocarburo de Aril/genética , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
3.
Life Sci ; 351: 122867, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38914303

RESUMEN

AIMS: FKBP5 encodes FKBP51, which has been implicated in stress-related psychiatric disorders, and its expression is often increased under chronic stress, contributing to mental dysfunctions. However, the precise role of FKBP51 in brain inflammation remains unclear. This study aimed to investigate the role of FKBP51 in microglia-mediated inflammatory responses in the central nervous system. MAIN METHODS: We employed a peripheral lipopolysaccharide (LPS) administration model to compare microglial activation and cytokine gene expression between Fkbp5 knockout (Fkbp5-KO) and wild-type (WT) male mice. Additionally, we used both BV2 and primary microglia in vitro to examine how Fkbp5 deletion influenced inflammation-related pathways and microglial functions. KEY FINDINGS: This study revealed that systemic LPS-induced microglial activation was significantly attenuated in Fkbp5-KO mice compared with WT mice. In Fkbp5-KO mice following the LPS challenge, there was a notable decrease in the expression of pro-inflammatory genes, coupled with an increase in the anti-inflammatory gene Arg1. Furthermore, Fkbp5 knockdown in BV2 microglial cells led to reduced expression of LPS-induced inflammatory markers, and targeted inhibition of NF-κB activation, while Akt signaling remained unaffected. Similar results were observed in Fkbp5-KO primary microglia, which exhibited not only decreased microglial activation but also a significant reduction in phagocytic activity in response to LPS stimulation. SIGNIFICANCE: This study highlights the critical role of FKBP51 in LPS-induced microglial activation and neuroinflammation. It shows that reducing FKBP51 levels attenuates inflammation through NF-κB signaling in microglia. This suggests that FKBP51 is a potential target for alleviating neuroinflammation-induced stress responses.


Asunto(s)
Lipopolisacáridos , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía , FN-kappa B , Enfermedades Neuroinflamatorias , Transducción de Señal , Proteínas de Unión a Tacrolimus , Animales , Microglía/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Proteínas de Unión a Tacrolimus/genética , FN-kappa B/metabolismo , Masculino , Ratones , Enfermedades Neuroinflamatorias/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo
4.
Biomed Pharmacother ; 173: 116404, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38471275

RESUMEN

High-fat diet (HFD)-induced fatty liver disease is a deteriorating risk factor for Alzheimer's disease (AD). Mitigating fatty liver disease has been shown to attenuate AD-like pathology in animal models. However, it remains unclear whether enhancing Aß clearance through immunotherapy would in turn attenuate HFD-induced fatty liver or whether its efficacy would be compromised by long-term exposure to HFD. Here, the therapeutic potentials of an anti-Aß antibody, NP106, was investigated in APP/PS1 mice by HFD feeding for 44 weeks. The data demonstrate that NP106 treatment effectively reduced Aß burden and pro-inflammatory cytokines in HFD-fed APP/PS1 mice and ameliorated HFD-aggravated cognitive impairments during the final 18 weeks of the study. The rejuvenating characteristics of microglia were evident in APP/PS1 mice with NP106 treatment, namely enhanced microglial Aß phagocytosis and attenuated microglial lipid accumulation, which may explain the benefits of NP106. Surprisingly, NP106 also reduced HFD-induced hyperglycemia, fatty liver, liver fibrosis, and hepatic lipids, concomitant with modifications in the expressions of genes involved in hepatic lipogenesis and fatty acid oxidation. The data further reveal that brain Aß burden and behavioral deficits were positively correlated with the severity of fatty liver disease and fasting serum glucose levels. In conclusion, our study shows for the first time that anti-Aß immunotherapy using NP106, which alleviates AD-like disorders in APP/PS1 mice, ameliorates fatty liver disease. Minimizing AD-related pathology and symptoms may reduce the vicious interplay between central AD and peripheral fatty liver disease, thereby highlighting the importance of developing AD therapies from a systemic disease perspective.


Asunto(s)
Enfermedad de Alzheimer , Hígado Graso , Hepatopatías , Ratones , Animales , Precursor de Proteína beta-Amiloide/metabolismo , Ratones Transgénicos , Dieta Alta en Grasa/efectos adversos , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Hepatopatías/metabolismo , Hígado Graso/metabolismo , Modelos Animales de Enfermedad , Péptidos beta-Amiloides/metabolismo
5.
Mol Neurobiol ; 56(12): 8475-8476, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31317492

RESUMEN

The original version of this article unfortunately contained a mistake. The authors observed inadvertent error in Fig. 7d, in which the image of the GFAP/DAPI in the WT saline treated mice was rotated left 90-degree by mistake. The corrected representative image is given below.

6.
Mol Neurobiol ; 56(12): 8451-8474, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31257558

RESUMEN

Astrocytes play pivotal roles in regulating glutamate homeostasis at tripartite synapses. Inhibition of soluble epoxide hydrolase (sEHi) provides neuroprotection by blocking the degradation of 14,15-epoxyeicosatrienoic acid (14,15-EET), a lipid mediator whose synthesis can be activated downstream from group 1 metabotropic glutamate receptor (mGluR) signaling in astrocytes. However, it is unclear how sEHi regulates glutamate excitotoxicity. Here, we used three primary rat cortical culture systems, neuron-enriched (NE), astrocyte-enriched glia-neuron mix (GN), and purified astrocytes, to delineate the underlying mechanism by which sEHi and 14,15-EET attenuate excitotoxicity. We found that sEH inhibitor 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA) and 14,15-EET both attenuated N-methyl-D-aspartate (NMDA)-induced neurite damage and cell death in GN, not NE, cortical cultures. The anti-excitotoxic effects of 14,15-EET and AUDA were both blocked by the group 1 mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP), as were their protective effects against NMDA-disrupted perineuronal astrocyte processes expressing glutamate transporter-1 (GLT-1) and subsequent glutamate uptake. Knockdown of sEH expression also attenuated NMDA neurotoxicity in mGluR5- and GLT-1-dependent manners. The 14,15-EET/AUDA-preserved astroglial integrity was confirmed in glutamate-stimulated primary astrocytes along with the reduction of the c-Jun N-terminal kinase 1 phosphorylation, in which the 14,15-EET effect is mGluR5-dependent. In vivo studies validated that sEHi and genetic deletion of sEH (Ephx2-KO) ameliorated excitotoxic kainic acid-induced seizure, memory impairment, and neuronal loss while preserving GLT-1-expressing perineuronal astrocytes in hippocampal CA3 subregions. These results suggest that 14,15-EET mediates mGluR5-dependent anti-excitotoxicity by protecting astrocytes to maintain glutamate homeostasis, which may account for the beneficial effect of sEH inhibition in excitotoxic brain injury and diseases.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Astrocitos/patología , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Ácido Glutámico/metabolismo , Homeostasis , Plasticidad Neuronal/efectos de los fármacos , Neurotoxinas/toxicidad , Ácido 8,11,14-Eicosatrienoico/farmacología , Adamantano/análogos & derivados , Adamantano/farmacología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Epóxido Hidrolasas/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Hipocampo/metabolismo , Ácido Kaínico , Ácidos Láuricos/farmacología , Ratones Endogámicos C57BL , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Modelos Biológicos , N-Metilaspartato , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas Sprague-Dawley , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Receptor del Glutamato Metabotropico 5/metabolismo , Solubilidad
7.
Sci Rep ; 7: 40825, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28098200

RESUMEN

Mammalian Eag1 (Kv10.1) potassium (K+) channels are widely expressed in the brain. Several mutations in the gene encoding human Eag1 K+ channel have been associated with congenital neurodevelopmental anomalies. Currently very little is known about the molecules mediating protein synthesis and degradation of Eag1 channels. Herein we aim to ascertain the protein degradation mechanism of rat Eag1 (rEag1). We identified cullin 7 (Cul7), a member of the cullin-based E3 ubiquitin ligase family, as a novel rEag1 binding partner. Immunoprecipitation analyses confirmed the interaction between Cul7 and rEag1 in heterologous cells and neuronal tissues. Cul7 and rEag1 also exhibited significant co-localization at synaptic regions in neurons. Over-expression of Cul7 led to reduced protein level, enhanced ubiquitination, accelerated protein turn-over, and decreased current density of rEag1 channels. We provided further biochemical and morphological evidence suggesting that Cul7 targeted endoplasmic reticulum (ER)- and plasma membrane-localized rEag1 to the proteasome and the lysosome, respectively, for protein degradation. Cul7 also contributed to protein degradation of a disease-associated rEag1 mutant. Together, these results indicate that Cul7 mediates both proteasomal and lysosomal degradations of rEag1. Our findings provide a novel insight to the mechanisms underlying ER and peripheral protein quality controls of Eag1 channels.


Asunto(s)
Proteínas Cullin/metabolismo , Canales de Potasio Éter-A-Go-Go/metabolismo , Lisosomas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Membrana Celular/metabolismo , Proteínas Cullin/genética , Cicloheximida/farmacología , Retículo Endoplásmico/metabolismo , Canales de Potasio Éter-A-Go-Go/genética , Células HEK293 , Humanos , Leupeptinas/farmacología , Neuronas/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Unión Proteica , Estabilidad Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA