RESUMEN
In this paper, we propose a linear differential detection system based on a frequency domain weak measurement. The system can be used for detecting optical substances. Moreover, we completed an experiment to detect himan serum albumin (HSA) content in a mixture of human serum albumin and l-proline via dialysis. This work also proves the differential function of the system. This experiment can be further extended to detecting protein content in a mixed solution that contains protein macromolecules and various small molecules. It is very important for detecting molecules without photomarking in solutions of complex biological samples. In this paper, the system has an optical resolution of 1.39 × 10-5, and resolution of 4.06 × 10-8 mol/L for himan serum protein solution.
Asunto(s)
Óptica y Fotónica/métodos , Albúmina Sérica Humana/análisis , Glucosa/química , Humanos , Rotación Óptica , Prolina/química , Teoría CuánticaRESUMEN
We propose a self-referential fast detection scheme for a frequency domain weak measurement system for the detection of enantiomeric impurities in chiral molecules. In a transmissive weak measurement system, the optical rotation (OR) is used to modify the pre-selected polarization state and the post-selection polarization state. We obtained the sum and difference of the optical rotations produced by the sample and the standard by rotating the quarter wave plate in the system. Then, we estimate the ratio of chiral molecules to enantiomeric impurities using the ratio of the central wavelength shifts caused by the addition and subtraction states described above. In this paper, our system has an optical resolution of 1.88 × 10-5°. At the same time, we completed the detection of the ratio of the two substances in the mixture of L-proline and D-proline in different proportions, which proved that our system can quickly detect the content of enantiomeric impurities in chiral molecules.