Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36835096

RESUMEN

Infants exposed to diabetic pregnancy are at higher risk of cardiomyopathy at birth and early onset cardiovascular disease (CVD) as adults. Using a rat model, we showed how fetal exposure to maternal diabetes causes cardiac disease through fuel-mediated mitochondrial dysfunction, and that a maternal high-fat diet (HFD) exaggerates the risk. Diabetic pregnancy increases circulating maternal ketones which can have a cardioprotective effect, but whether diabetes-mediated complex I dysfunction impairs myocardial metabolism of ketones postnatally remains unknown. The objective of this study was to determine whether neonatal rat cardiomyocytes (NRCM) from diabetes- and HFD-exposed offspring oxidize ketones as an alternative fuel source. To test our hypothesis, we developed a novel ketone stress test (KST) using extracellular flux analyses to compare real-time ß-hydroxybutyrate (ßHOB) metabolism in NRCM. We also compared myocardial expression of genes responsible for ketone and lipid metabolism. NRCM had a dose-dependent increase in respiration with increasing concentrations of ßHOB, demonstrating that both control and combination exposed NRCM can metabolize ketones postnatally. Ketone treatment also enhanced the glycolytic capacity of combination exposed NRCM with a dose-dependent increase in the glucose-mediated proton efflux rate (PER) from CO2 (aerobic glycolysis) alongside a decreased reliance on PER from lactate (anaerobic glycolysis). Expression of genes responsible for ketone body metabolism was higher in combination exposed males. Findings demonstrate that myocardial ketone body metabolism is preserved and improves fuel flexibility in NRCM from diabetes- and HFD-exposed offspring, which suggests that ketones might serve a protective role in neonatal cardiomyopathy due to maternal diabetes.


Asunto(s)
Diabetes Gestacional , Embarazo en Diabéticas , Efectos Tardíos de la Exposición Prenatal , Embarazo , Masculino , Humanos , Femenino , Ratas , Animales , Dieta Alta en Grasa , Efectos Tardíos de la Exposición Prenatal/metabolismo , Miocitos Cardíacos/metabolismo , Cetonas
2.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673574

RESUMEN

Offspring born to diabetic or obese mothers have a higher lifetime risk of heart disease. Previously, we found that rat offspring exposed to late-gestational diabetes mellitus (LGDM) and maternal high-fat (HF) diet develop mitochondrial dysfunction, impaired cardiomyocyte bioenergetics, and cardiac dysfunction at birth and again during aging. Here, we compared echocardiography, cardiomyocyte bioenergetics, oxidative damage, and mitochondria-mediated cell death among control, pregestational diabetes mellitus (PGDM)-exposed, HF-diet-exposed, and combination-exposed newborn offspring. We hypothesized that PGDM exposure, similar to LGDM, causes mitochondrial dysfunction to play a central, pathogenic role in neonatal cardiomyopathy. We found that PGDM-exposed offspring, similar to LGDM-exposed offspring, have cardiac dysfunction at birth, but their isolated cardiomyocytes have seemingly less bioenergetics impairment. This finding was due to confounding by impaired viability related to poorer ATP generation, more lipid peroxidation, and faster apoptosis under metabolic stress. To mechanistically isolate and test the role of mitochondria, we transferred mitochondria from normal rat myocardium to control and exposed neonatal rat cardiomyocytes. As expected, transfer provides a respiratory boost to cardiomyocytes from all groups. They also reduce apoptosis in PGDM-exposed males, but not in females. Findings highlight sex-specific differences in mitochondria-mediated mechanisms of developmentally programmed heart disease and underscore potential caveats of therapeutic mitochondrial transfer.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Diabetes Gestacional/fisiopatología , Metabolismo Energético , Cardiopatías/prevención & control , Mitocondrias/trasplante , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Cardiopatías/etiología , Cardiopatías/patología , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Embarazo , Efectos Tardíos de la Exposición Prenatal/etiología , Efectos Tardíos de la Exposición Prenatal/patología , Efectos Tardíos de la Exposición Prenatal/prevención & control , Ratas , Ratas Sprague-Dawley , Factores Sexuales
3.
Int J Mol Sci ; 20(12)2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31242551

RESUMEN

Infants born to diabetic or obese mothers are at greater risk of heart disease at birth and throughout life, but prevention is hindered because underlying mechanisms remain poorly understood. Using a rat model, we showed that prenatal exposure to maternal diabetes and a high-fat diet caused diastolic and systolic dysfunction, myocardial lipid accumulation, decreased respiratory capacity, and oxidative stress in newborn offspring hearts. This study aimed to determine whether mitochondrial dynamism played a role. Using confocal live-cell imaging, we examined mitochondrial dynamics in neonatal rat cardiomyocytes (NRCM) from four prenatally exposed groups: controls, diabetes, high-fat diet, and combination exposed. Cardiac expression of dynamism-related genes and proteins were compared, and gender-specific differences were evaluated. Findings show that normal NRCM have highly dynamic mitochondria with a well-balanced number of fusion and fission events. Prenatal exposure to diabetes or a high-fat diet impaired dynamism resulting in shorter, wider mitochondria. Mechanisms of impaired dynamism were gender-specific and protein regulated. Females had higher expression of fusion proteins which may confer a cardioprotective effect. Prenatally exposed male hearts had post-translational modifications known to impair dynamism and influence mitophagy-mediated cell death. This study identifies mitochondrial fusion and fission proteins as targetable, pathogenic regulators of heart health in offspring exposed to excess circulating maternal fuels.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Desarrollo Fetal , Corazón/embriología , Dinámicas Mitocondriales , Organogénesis , Embarazo en Diabéticas , Animales , Animales Recién Nacidos , Biomarcadores , Femenino , Desarrollo Fetal/genética , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Masculino , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/ultraestructura , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Organogénesis/genética , Embarazo , Procesamiento Proteico-Postraduccional , Ratas , Factores Sexuales
4.
Front Endocrinol (Lausanne) ; 11: 570846, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042024

RESUMEN

Background: Children born to diabetic or obese mothers have a higher risk of heart disease at birth and later in life. Using chromatin immunoprecipitation sequencing, we previously demonstrated that late-gestation diabetes, maternal high fat (HF) diet, and the combination causes distinct fuel-mediated epigenetic reprogramming of rat cardiac tissue during fetal cardiogenesis. The objective of the present study was to investigate the overall transcriptional signature of newborn offspring exposed to maternal diabetes and maternal H diet. Methods: Microarray gene expression profiling of hearts from diabetes exposed, HF diet exposed, and combination exposed newborn rats was compared to controls. Functional annotation, pathway and network analysis of differentially expressed genes were performed in combination exposed and control newborn rat hearts. Further downstream metabolic assessments included measurement of total and phosphorylated AKT2 and GSK3ß, as well as quantification of glycolytic capacity by extracellular flux analysis and glycogen staining. Results: Transcriptional analysis identified significant fuel-mediated changes in offspring cardiac gene expression. Specifically, functional pathways analysis identified two key signaling cascades that were functionally prioritized in combination exposed offspring hearts: (1) downregulation of fibroblast growth factor (FGF) activated PI3K/AKT pathway and (2) upregulation of peroxisome proliferator-activated receptor gamma coactivator alpha (PGC1α) mitochondrial biogenesis signaling. Functional metabolic and histochemical assays supported these transcriptome changes, corroborating diabetes- and diet-induced cardiac transcriptome remodeling and cardiac metabolism in offspring. Conclusion: This study provides the first data accounting for the compounding effects of maternal hyperglycemia and hyperlipidemia on the developmental cardiac transcriptome, and elucidates nuanced and novel features of maternal diabetes and diet on regulation of heart health.


Asunto(s)
Diabetes Gestacional/metabolismo , Dieta Alta en Grasa/efectos adversos , Redes Reguladoras de Genes/fisiología , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Miocardio/metabolismo , Transcriptoma/fisiología , Animales , Animales Recién Nacidos , Diabetes Gestacional/genética , Diabetes Gestacional/patología , Dieta Alta en Grasa/tendencias , Femenino , Perfilación de la Expresión Génica/métodos , Masculino , Miocardio/patología , Biogénesis de Organelos , Embarazo , Ratas
5.
iScience ; 23(11): 101746, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33225249

RESUMEN

Infants of diabetic mothers are at risk of cardiomyopathy at birth and myocardial infarction in adulthood, but prevention is hindered because mechanisms remain unknown. We previously showed that maternal glucolipotoxicity increases the risk of cardiomyopathy and mortality in newborn rats through fuel-mediated mitochondrial dysfunction. Here we demonstrate ongoing cardiometabolic consequences by cross-fostering and following echocardiography, cardiomyocyte bioenergetics, mitochondria-mediated turnover, and cell death following metabolic stress in aged adults. Like humans, cardiac function improves by weaning with no apparent differences in early adulthood but declines again in aged diabetes-exposed offspring. This is preceded by impaired oxidative phosphorylation, exaggerated age-related increase in mitochondrial number, and higher oxygen consumption. Prenatally exposed male cardiomyocytes have more mitolysosomes indicating high baseline turnover; when exposed to metabolic stress, mitophagy cannot increase and cardiomyocytes have faster mitochondrial membrane potential loss and mitochondria-mediated cell death. Details highlight age- and sex-specific roles of mitochondria in developmentally programmed adult heart disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA