Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(18): e2307090121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648487

RESUMEN

G protein-coupled receptors (GPCRs) transduce the effects of many neuromodulators including dopamine, serotonin, epinephrine, acetylcholine, and opioids. The localization of synthetic or endogenous GPCR agonists impacts their action on specific neuronal pathways. In this paper, we show a series of single-protein chain integrator sensors that are highly modular and could potentially be used to determine GPCR agonist localization across the brain. We previously engineered integrator sensors for the mu- and kappa-opioid receptor agonists called M- and K-Single-chain Protein-based Opioid Transmission Indicator Tool (SPOTIT), respectively. Here, we engineered red versions of the SPOTIT sensors for multiplexed imaging of GPCR agonists. We also modified SPOTIT to create an integrator sensor design platform called SPOTIT for all GPCRs (SPOTall). We used the SPOTall platform to engineer sensors for the beta 2-adrenergic receptor (B2AR), the dopamine receptor D1, and the cholinergic receptor muscarinic 2 agonists. Finally, we demonstrated the application of M-SPOTIT and B2AR-SPOTall in detecting exogenously administered morphine, isoproterenol, and epinephrine in the mouse brain via locally injected viruses. The SPOTIT and SPOTall sensor design platform has the potential for unbiased agonist detection of many synthetic and endogenous neuromodulators across the brain.


Asunto(s)
Receptores Acoplados a Proteínas G , Animales , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Ratones , Células HEK293 , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M2/metabolismo , Isoproterenol/farmacología , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Morfina/farmacología , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/metabolismo , Técnicas Biosensibles/métodos
2.
Adv Sci (Weinh) ; 11(31): e2400437, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885417

RESUMEN

SH2B1 mutations are associated with obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD) in humans. Global deletion of Sh2b1 results in severe obesity, type 2 diabetes, and MASLD in mice. Neuron-specific restoration of SH2B1 rescues the obesity phenotype of Sh2b1-null mice, indicating that the brain is a main SH2B1 target. However, SH2B1 neurocircuits remain elusive. SH2B1-expressing neurons in the paraventricular hypothalamus (PVHSH2B1) and a PVHSH2B1→dorsal raphe nucleus (DRN) neurocircuit are identified here. PVHSH2B1 axons monosynaptically innervate DRN neurons. Optogenetic stimulation of PVHSH2B1 axonal fibers in the DRN suppresses food intake. Chronic inhibition of PVHSH2B1 neurons causes obesity. In male and female mice, either embryonic-onset or adult-onset deletion of Sh2b1 in PVH neurons causes energy imbalance, obesity, insulin resistance, glucose intolerance, and MASLD. Ablation of Sh2b1 in the DRN-projecting PVHSH2B1 subpopulation also causes energy imbalance, obesity, and metabolic disorders. Conversely, SH2B1 overexpression in either total or DRN-projecting PVHSH2B1 neurons protects against diet-induced obesity. SH2B1 binds to TrkB and enhances brain-derived neurotrophic factor (BDNF) signaling. Ablation of Sh2b1 in PVHSH2B1 neurons induces BDNF resistance in the PVH, contributing to obesity. In conclusion, these results unveil a previously unrecognized PVHSH2B1→DRN neurocircuit through which SH2B1 defends against obesity by enhancing BDNF/TrkB signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Obesidad , Núcleo Hipotalámico Paraventricular , Animales , Obesidad/metabolismo , Obesidad/genética , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Masculino , Femenino , Núcleo Hipotalámico Paraventricular/metabolismo , Modelos Animales de Enfermedad , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/genética , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Núcleo Dorsal del Rafe/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Neuronas/metabolismo
3.
Nat Neurosci ; 27(9): 1734-1744, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38977887

RESUMEN

Coughing is a respiratory behavior that plays a crucial role in protecting the respiratory system. Here we show that the nucleus of the solitary tract (NTS) in mice contains heterogenous neuronal populations that differentially control breathing. Within these subtypes, activation of tachykinin 1 (Tac1)-expressing neurons triggers specific respiratory behaviors that, as revealed by our detailed characterization, are cough-like behaviors. Chemogenetic silencing or genetic ablation of Tac1 neurons inhibits cough-like behaviors induced by tussive challenges. These Tac1 neurons receive synaptic inputs from the bronchopulmonary chemosensory and mechanosensory neurons in the vagal ganglion and coordinate medullary regions to control distinct aspects of cough-like defensive behaviors. We propose that these Tac1 neurons in the NTS are a key component of the airway-vagal-brain neural circuit that controls cough-like defensive behaviors in mice and that they coordinate the downstream modular circuits to elicit the sequential motor pattern of forceful expiratory responses.


Asunto(s)
Tronco Encefálico , Tos , Neuronas , Taquicininas , Nervio Vago , Animales , Tos/fisiopatología , Nervio Vago/fisiología , Ratones , Tronco Encefálico/fisiología , Taquicininas/metabolismo , Taquicininas/genética , Neuronas/fisiología , Núcleo Solitario/fisiología , Masculino , Interocepción/fisiología , Vías Nerviosas/fisiología , Ratones Transgénicos , Ratones Endogámicos C57BL , Conducta Animal/fisiología
4.
Neurosci Bull ; 39(4): 589-601, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36522525

RESUMEN

The parabrachial nucleus (PBN) integrates interoceptive and exteroceptive information to control various behavioral and physiological processes including breathing, emotion, and sleep/wake regulation through the neural circuits that connect to the forebrain and the brainstem. However, the precise identity and function of distinct PBN subpopulations are still largely unknown. Here, we leveraged molecular characterization, retrograde tracing, optogenetics, chemogenetics, and electrocortical recording approaches to identify a small subpopulation of neurotensin-expressing neurons in the PBN that largely project to the emotional control regions in the forebrain, rather than the medulla. Their activation induces freezing and anxiety-like behaviors, which in turn result in tachypnea. In addition, optogenetic and chemogenetic manipulations of these neurons revealed their function in promoting wakefulness and maintaining sleep architecture. We propose that these neurons comprise a PBN subpopulation with specific gene expression, connectivity, and function, which play essential roles in behavioral and physiological regulation.


Asunto(s)
Núcleos Parabraquiales , Núcleos Parabraquiales/fisiología , Vigilia/fisiología , Neuronas/fisiología , Emociones , Sueño
5.
bioRxiv ; 2023 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-37398137

RESUMEN

GPCRs transduce the effects of many neuromodulators including dopamine, serotonin, epinephrine, acetylcholine, and opioids. The localization of synthetic or endogenous GPCR agonists impacts their action on specific neuronal pathways. In this paper, we show a series of single-protein chain integrator sensors to determine GPCR agonist localization in the whole brain. We previously engineered integrator sensors for the mu and kappa opioid receptor agonists called M- and K-SPOTIT, respectively. Here, we show a new integrator sensor design platform called SPOTall that we used to engineer sensors for the beta-2-adrenergic receptor (B2AR), the dopamine receptor D1, and the cholinergic receptor muscarinic 2 agonists. For multiplexed imaging of SPOTIT and SPOTall, we engineered a red version of the SPOTIT sensors. Finally, we used M-SPOTIT and B2AR-SPOTall to detect morphine, isoproterenol, and epinephrine in the mouse brain. The SPOTIT and SPOTall sensor design platform can be used to design a variety of GPCR integrator sensors for unbiased agonist detection of many synthetic and endogenous neuromodulators across the whole brain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA