Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Therm Biol ; 80: 21-36, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30784485

RESUMEN

The temperature-size rule postulates that the growth rates of ectotherms increase under rising temperatures, while the sizes of these organisms at maturity decrease. However, the upper temperature-tolerance range is also typically represented by a metabolic tipping point after which growth suddenly ceases. Free-living nematodes are important members of ecosystems, but little is known about their thermal tolerance. In the present study we measured the population growth rates and body-size distributions of five species of free-living bacterivorous nematodes exposed in the laboratory to a broad range of temperatures. This allowed a determination of their different thermal tolerance ranges, even of closely related species, including Plectus acuminatus (thermal optimum of 20-25 °C) and P. cf. velox (10-15 °C). With the exception of Acrobeloides nanus, which had the broadest thermal tolerance range, the population growth of the other species declined between 25 and 30 °C. Our results were consistent with the temperature-size rule, as the body-size of the tested species at maturity decreased with increasing temperature. This reduction was accompanied by a smaller number of eggs carried by mature females. Although our study was purely experimental, it suggests that heat waves or other alterations in the thermal regime affect the population dynamics and body-size structure of nematode communities in the field.


Asunto(s)
Nematodos/anatomía & histología , Nematodos/fisiología , Temperatura , Animales , Tamaño Corporal , Femenino , Fertilidad , Crecimiento Demográfico
2.
Oecologia ; 187(1): 75-84, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29525905

RESUMEN

Investigations of the interplay of organisms in an ecological community are a prerequisite to understanding the processes that shape the structures of those communities. Among several types of interactions, interest in the positive interactions of species that compete for the same resource has grown, as they may provide a mechanism enabling coexistence. In the laboratory experiment described herein, the effects of interspecific interaction on the population growth of two bacterial-feeding nematode species, Panagrolaimus cf. thienemanni and Poikilolaimus cf. regenfussi, were investigated. Specifically, we asked: (1) whether there is an interspecific interaction between organisms competing for a mutual resource and (2) whether these interactions are altered by the competitors' initial densities and (3) their variable growth rates (induced by different food supplies). Each treatment initially contained 48 nematode individuals, but at different species ratios (48:0; 32:16; 24:24; 16:32; 0:48). The populations were provided with three different bacterial densities (108, 109, and 1010 cells ml-1) as food. The data were analyzed using a generalized linear mixed model. The best-fitting model revealed a significant decline in population growth rates with an increasing species ratio, but depending on the food density and species. These results provide strong evidence for positive interspecific interactions that vary with both species density and food-supply level. They also suggest important roles for positive interspecific interactions in habitat colonization and in maintaining the coexistence of species in the same trophic group.


Asunto(s)
Nematodos , Crecimiento Demográfico , Animales , Ecosistema , Humanos , Dinámica Poblacional
3.
PLoS One ; 19(5): e0303864, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758759

RESUMEN

Nematodes disperse passively and are amongst the smallest invertebrates on Earth. Free-living nematodes in mountain lakes are highly tolerant of environmental variations and are thus excellent model organisms in dispersal studies, since species-environment relationships are unlikely to interfere. In this study, we investigated how population or organism traits influence the stochastic physical nature of passive dispersal in a topologically complex environment. Specifically, we analyzed the influence of female proportion and body size on the geographical distribution of nematode species in the mountain lakes of the Pyrenees. We hypothesized that dispersal is facilitated by (i) a smaller body size, which would increase the rate of wind transport, and (ii) a higher female proportion within a population, which could increase colonization success because many nematode species are capable of parthenogenetic reproduction. The results showed that nematode species with a low proportion of females tend to have clustered spatial distributions that are not associated with patchy environmental conditions, suggesting greater barriers to dispersal. When all species were pooled, the overall proportion of females tended to increase at the highest elevations, where dispersal between lakes is arguably more difficult. The influence of body size was barely relevant for nematode distributions. Our study highlights the relevance of female proportion as a mechanism that enhances the dispersal success of parthenogenetic species, and that female sex is a determining factor in metacommunity connectivity.


Asunto(s)
Tamaño Corporal , Lagos , Nematodos , Animales , Femenino , Tamaño Corporal/fisiología , Nematodos/fisiología , Masculino , Distribución Animal/fisiología , Ecosistema
4.
Sci Rep ; 12(1): 5578, 2022 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-35368038

RESUMEN

Dispersal reflects the trade-offs between the cost of a change in habitat and the fitness benefits conferred by that change. Many factors trigger the dispersal of animals, but in field studies they are typically not controllable; consequently, they are mostly studied in the laboratory, where their single and interactive effects on dispersal can be investigated. We tested whether three fundamental factors, population density as well as bottom-up and top-down control, influence the emigration of the nematode Caenorhabditis elegans. Nematode movement was observed in experiments conducted in two-chamber arenas in which these factors were manipulated. The results showed that both decreasing food availability and increasing population density had a positive influence on nematode dispersal. The presence of the predatory flatworm Polycelis tenuis did not consistently affect dispersal but worked as an amplifier when linked with population density with respect to certain food-supply levels. Our study indicates that nematode dispersal on small scales is non-random; rather, the worms' ability to perceive environmental information leads to a context-dependent decision by individuals to leave or stay in a patch. The further use of nematodes to gain insights into both the triggers that initiate dispersal, and the traits of dispersing individuals will improve the modeling of animal behavior in changing and spatial heterogenous landscapes.


Asunto(s)
Ecosistema , Animales , Densidad de Población
5.
Sci Rep ; 9(1): 14716, 2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31605024

RESUMEN

The field of metacommunity studies is growing rapidly, including recent applications to river networks. Most of these studies have targeted a single river network but whether their findings are relevant to other river systems is unknown. This study investigated the influence of environmental, spatial and temporal parameters on the community structure of nematodes in the river networks of the Elbe and Rhine. We asked whether the variance in community structure was better explained by spatial variables representing the watercourse than by overland distances. After determining the patterns in the Elbe river network, we tested whether they also explained the Rhine data. The Elbe data were evaluated using a boosted regression tree analysis. The predictive ability of the model was then assessed using the Rhine data. In addition to strong temporal dynamics, environmental factors were more important than spatial factors in structuring riverine nematode communities. Community structure was more strongly influenced by watercourse than by Euclidean distances. Application of the model's predictions to the Rhine data correlated significantly with field observations. Our model shows that the consequences of changes in environmental factors or habitat connectivity for aquatic communities across different river networks are quantifiable.


Asunto(s)
Organismos Acuáticos/fisiología , Ecosistema , Modelos Estadísticos , Nematodos/fisiología , Ríos , Animales , Predicción/métodos , Alemania , Nematodos/clasificación
6.
Sci Rep ; 8(1): 6814, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29717144

RESUMEN

Wind-mediated transport is an important mechanism in the dispersal of small metazoans. Yet, concrete dispersal rates have hardly been examined. Here we present the results of an one-year field experiment investigating the composition and dispersal rates of aeroplankton. To gain insights into the dynamics of dispersal at the species level, we focused on nematodes, worldwide the most common metazoan taxon. Among the six taxa collected in this study (nematodes, rotifers, collembolans, tardigrades, mites, and thrips), nematodes had the highest dispersal rates (up to >3000 individuals m-2 in 4 weeks, 27 species identified) and represented >44% of aeroplankton. Only living nematodes, and no propagules, were dispersed. All taxa had a higher dispersal potential in environments linked to the source habitat, evidenced by the much higher deposition of organisms in funnels placed on the ground than on the rooftop of a ten-story building. Nematodes under conditions of high humidity and wind speed had the highest dispersal rates, while increasing temperatures and dryness had a significantly positive impact on the wind drift of mites and thrips. The results indicated that wind dispersal over long distances is possible. The notable organismal input by wind dispersal may contribute to biodiversity and ecosystem functions.


Asunto(s)
Distribución Animal , Humedad , Nematodos/fisiología , Estaciones del Año , Viento , Animales , Biodiversidad , Ecosistema , Estudios de Seguimiento , Formaldehído/análisis , Estadios del Ciclo de Vida , Modelos Lineales , Nematodos/crecimiento & desarrollo , Plantas/parasitología , Suelo/parasitología , Temperatura , Agua/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA