Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Neurosci ; 39(23): 4434-4447, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-30926748

RESUMEN

Noise-induced excitotoxicity is thought to depend on glutamate. However, the excitotoxic mechanisms are unknown, and the necessity of glutamate for synapse loss or regeneration is unclear. Despite absence of glutamatergic transmission from cochlear inner hair cells in mice lacking the vesicular glutamate transporter-3 (Vglut3KO ), at 9-11 weeks, approximately half the number of synapses found in Vglut3WT were maintained as postsynaptic AMPA receptors juxtaposed with presynaptic ribbons and voltage-gated calcium channels (CaV1.3). Synapses were larger in Vglut3KO than Vglut3WT In Vglut3WT and Vglut3+/- mice, 8-16 kHz octave-band noise exposure at 100 dB sound pressure level caused a threshold shift (∼40 dB) and a loss of synapses (>50%) at 24 h after exposure. Hearing threshold and synapse number partially recovered by 2 weeks after exposure as ribbons became larger, whereas recovery was significantly better in Vglut3WT Noise exposure at 94 dB sound pressure level caused auditory threshold shifts that fully recovered in 2 weeks, whereas suprathreshold hearing recovered faster in Vglut3WT than Vglut3+/- These results, from mice of both sexes, suggest that spontaneous repair of synapses after noise depends on the level of Vglut3 protein or the level of glutamate release during the recovery period. Noise-induced loss of presynaptic ribbons or postsynaptic AMPA receptors was not observed in Vglut3KO , demonstrating its dependence on vesicular glutamate release. In Vglut3WT and Vglut3+/-, noise exposure caused unpairing of presynaptic ribbons and presynaptic CaV1.3, but not in Vglut3KO where CaV1.3 remained clustered with ribbons at presynaptic active zones. These results suggest that, without glutamate release, noise-induced presynaptic Ca2+ influx was insufficient to disassemble the active zone. However, synapse volume increased by 2 weeks after exposure in Vglut3KO , suggesting glutamate-independent mechanisms.SIGNIFICANCE STATEMENT Hearing depends on glutamatergic transmission mediated by Vglut3, but the role of glutamate in synapse loss and repair is unclear. Here, using mice of both sexes, we show that one copy of the Vglut3 gene is sufficient for noise-induced threshold shift and loss of ribbon synapses, but both copies are required for normal recovery of hearing function and ribbon synapse number. Impairment of the recovery process in mice having only one functional copy suggests that glutamate release may promote synapse regeneration. At least one copy of the Vglut3 gene is necessary for noise-induced synapse loss. Although the excitotoxic mechanism remains unknown, these findings are consistent with the presumption that glutamate is the key mediator of noise-induced synaptopathy.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/fisiología , Ácido Glutámico/fisiología , Células Ciliadas Auditivas Internas/fisiología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Sinapsis/fisiología , Envejecimiento/fisiología , Sistemas de Transporte de Aminoácidos Acídicos/deficiencia , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animales , Umbral Auditivo/fisiología , Calcio/metabolismo , Potenciales Evocados Auditivos , Exocitosis , Femenino , Dosificación de Gen , Genes Reporteros , Células Ciliadas Auditivas Externas/fisiología , Transporte Iónico , Masculino , Ratones , Ratones Noqueados , Receptores AMPA/fisiología , Recuperación de la Función , Ganglio Espiral de la Cóclea/citología , Sinapsis/ultraestructura
2.
Nature ; 510(7504): 273-7, 2014 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-24776797

RESUMEN

Pluripotent stem cells provide a potential solution to current epidemic rates of heart failure by providing human cardiomyocytes to support heart regeneration. Studies of human embryonic-stem-cell-derived cardiomyocytes (hESC-CMs) in small-animal models have shown favourable effects of this treatment. However, it remains unknown whether clinical-scale hESC-CM transplantation is feasible, safe or can provide sufficient myocardial regeneration. Here we show that hESC-CMs can be produced at a clinical scale (more than one billion cells per batch) and cryopreserved with good viability. Using a non-human primate model of myocardial ischaemia followed by reperfusion, we show that cryopreservation and intra-myocardial delivery of one billion hESC-CMs generates extensive remuscularization of the infarcted heart. The hESC-CMs showed progressive but incomplete maturation over a 3-month period. Grafts were perfused by host vasculature, and electromechanical junctions between graft and host myocytes were present within 2 weeks of engraftment. Importantly, grafts showed regular calcium transients that were synchronized to the host electrocardiogram, indicating electromechanical coupling. In contrast to small-animal models, non-fatal ventricular arrhythmias were observed in hESC-CM-engrafted primates. Thus, hESC-CMs can remuscularize substantial amounts of the infarcted monkey heart. Comparable remuscularization of a human heart should be possible, but potential arrhythmic complications need to be overcome.


Asunto(s)
Células Madre Embrionarias/citología , Corazón , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Miocitos Cardíacos/citología , Regeneración , Animales , Arritmias Cardíacas/fisiopatología , Calcio/metabolismo , Supervivencia Celular , Vasos Coronarios/fisiología , Criopreservación , Modelos Animales de Enfermedad , Electrocardiografía , Humanos , Macaca nemestrina , Masculino , Ratones , Medicina Regenerativa/métodos
3.
Nature ; 489(7415): 322-5, 2012 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-22864415

RESUMEN

Transplantation studies in mice and rats have shown that human embryonic-stem-cell-derived cardiomyocytes (hESC-CMs) can improve the function of infarcted hearts, but two critical issues related to their electrophysiological behaviour in vivo remain unresolved. First, the risk of arrhythmias following hESC-CM transplantation in injured hearts has not been determined. Second, the electromechanical integration of hESC-CMs in injured hearts has not been demonstrated, so it is unclear whether these cells improve contractile function directly through addition of new force-generating units. Here we use a guinea-pig model to show that hESC-CM grafts in injured hearts protect against arrhythmias and can contract synchronously with host muscle. Injured hearts with hESC-CM grafts show improved mechanical function and a significantly reduced incidence of both spontaneous and induced ventricular tachycardia. To assess the activity of hESC-CM grafts in vivo, we transplanted hESC-CMs expressing the genetically encoded calcium sensor, GCaMP3 (refs 4, 5). By correlating the GCaMP3 fluorescent signal with the host ECG, we found that grafts in uninjured hearts have consistent 1:1 host­graft coupling. Grafts in injured hearts are more heterogeneous and typically include both coupled and uncoupled regions. Thus, human myocardial grafts meet physiological criteria for true heart regeneration, providing support for the continued development of hESC-based cardiac therapies for both mechanical and electrical repair.


Asunto(s)
Arritmias Cardíacas/terapia , Fenómenos Electrofisiológicos , Células Madre Embrionarias/citología , Lesiones Cardíacas/fisiopatología , Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/trasplante , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/fisiopatología , Calcio/análisis , Calcio/metabolismo , Estimulación Eléctrica , Colorantes Fluorescentes/análisis , Cobayas , Lesiones Cardíacas/complicaciones , Lesiones Cardíacas/patología , Humanos , Mediciones Luminiscentes , Masculino , Contracción Miocárdica/fisiología , Miocardio/citología , Miocitos Cardíacos/fisiología , Taquicardia Ventricular/etiología , Taquicardia Ventricular/fisiopatología , Taquicardia Ventricular/terapia
4.
Front Neurol ; 15: 1322647, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523617

RESUMEN

Vestibular hair cells (HCs) are mechanoreceptors that sense head motions by modulating the firing rate of vestibular ganglion neurons (VGNs), whose central processes project to vestibular nucleus neurons (VNNs) and cerebellar neurons. We explored vestibular function after HC destruction in adult Pou4f3+/DTR (DTR) mice, in which injections of high-dose (50 ng/g) diphtheria toxin (DT) destroyed most vestibular HCs within 2 weeks. At that time, DTR mice had lost the horizontal vestibulo-ocular reflex (aVORH), and their VNNs failed to upregulate nuclear cFos expression in response to a vestibular stimulus (centrifugation). Five months later, 21 and 14% of HCs were regenerated in utricles and horizontal ampullae, respectively. The vast majority of HCs present were type II. This degree of HC regeneration did not restore the aVORH or centrifugation-evoked cFos expression in VNNs. The failure to regain vestibular pathway function was not due to degeneration of VGNs or VNNs because normal neuron numbers were maintained after HC destruction. Furthermore, sinusoidal galvanic stimulation at the mastoid process evoked cFos protein expression in VNNs, indicating that VGNs were able to regulate VNN activity after HC loss. aVORH and cFos responses in VNNs were robust after low-dose (25 ng/g) DT, which compared to high-dose DT resulted in a similar degree of type II HC death and regeneration but spared more type I HCs in both organs. These findings demonstrate that having more type I HCs is correlated with stronger responses to vestibular stimulation and suggest that regenerating type I HCs may improve vestibular function after HC loss.

5.
Otol Neurotol ; 44(1): 34-39, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36509435

RESUMEN

OBJECTIVE: To evaluate the safety and utility of an investigational robotic-assisted cochlear implant insertion system. STUDY DESIGN: Prospective, single-arm, open-label study under abbreviated Investigational Device Exemption requirements. SETTING: All procedures were performed, and all data were collected, at a single tertiary referral center. PATIENTS: Twenty-one postlingually deafened adult subjects that met Food and Drug Administration indication criteria for cochlear implantation. INTERVENTION: All patients underwent standard-of-care surgery for unilateral cochlear implantation with the addition of a single-use robotic-assisted insertion device during cochlear electrode insertion. MAIN OUTCOME MEASURES: Successful insertion of cochlear implant electrode array, electrode array insertion time, postoperative implant function. RESULTS: Successful robotic-assisted insertion of lateral wall cochlear implant electrode arrays was achieved in 20 (95.2%) of 21 patients. One insertion was unable to be achieved by either robotic-assisted or manual insertion methods, and the patient was retrospectively found to have a preexisting cochlear fracture. Mean intracochlear electrode array insertion time was 3 minutes 15 seconds. All implants with successful robotic-assisted electrode array insertion (n = 20) had normal impedance and neural response telemetry measures for up to 6 months after surgery. CONCLUSIONS: Here we report the first human trial of a single-use robotic-assisted surgical device for cochlear implant electrode array insertion. This device successfully and safely inserted lateral wall cochlear implant electrode arrays from the three device manufacturers with devices approved but he Food and Drug Administration.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Adulto , Humanos , Masculino , Cóclea/cirugía , Implantación Coclear/métodos , Electrodos Implantados , Estudios Prospectivos , Estudios Retrospectivos
6.
J Am Chem Soc ; 131(40): 14413-8, 2009 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-19764751

RESUMEN

We designed block copolymer pro-amphiphiles and amphiphiles for providing very long-term release of nitric oxide (NO). A block copolymer of N-acryloylmorpholine (AM, as a hydrophile) and N-acryloyl-2,5-dimethylpiperazine (AZd, as a hydrophilic precursor) was synthesized. The poly(N-acryloyl-2,5-dimethylpiperazine) (PAZd) is water-soluble, but chemical reaction of the secondary amines with NO to form a N-diazeniumdiolate (NONOate) converts the hydrophilic PAZd into a hydrophobic poly(sodium-1-(N-acryloyl-2,5-dimethylpiperazin-1-yl)diazen-1-ium-1,2-diolate) (PAZd.NONOate), driving aggregation. The PAM block guides this process toward micellization, rather than precipitation, yielding ca. 50 nm spherical micelles. The hydrophobic core of the micelle shielded the NONOate from the presence of water, and thus protons, which are required for NO liberation, delaying release to a remarkable 7 d half-life. Release of the NO returned the original soluble polymer. The very small NO-loaded micelles were able to penetrate complex tissue structures, such as the arterial media, opening up a number of tissue targets to NO-based therapy.


Asunto(s)
Resinas Acrílicas/química , Micelas , Donantes de Óxido Nítrico/química , Óxido Nítrico/química , Piperazinas/química , Resinas Acrílicas/síntesis química , Compuestos Azo/química , Donantes de Óxido Nítrico/síntesis química , Piperazinas/síntesis química
7.
Auris Nasus Larynx ; 45(4): 875-879, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29146179

RESUMEN

Although radiation-based treatment for nasopharyngeal cancer may achieve excellent long term oncologic results, late effects of therapy may lead to soft tissue radionecrosis and velopharyngeal insufficiency (VPI). Repair of these oro- and nasopharyngeal defects presents a complex reconstructive challenge. We present a case of a long-term survivor treated with chemoradiotherapy for nasopharyngeal cancer who developed progressive dysphagia, velopharyngeal insufficiency, and radionecrosis of the nasopharynx and soft palate, leading to tracheostomy and gastrostomy tube dependence. A staged reconstruction was performed, initially with a tubed nasoseptal flap for a creation of a mucosal-lined nasopharyngeal port. An adipofascial anterolateral thigh free flap was subsequently performed for soft palate reconstruction. Within 2 months, the oropharyngeal reconstruction had remucosalized and she was decannulated, taking an oral diet. Her speech was intelligible and she had good nasal breathing without symptoms of velopharyngeal insufficiency.


Asunto(s)
Tejido Adiposo/trasplante , Carcinoma/terapia , Quimioradioterapia/efectos adversos , Fascia/trasplante , Tabique Nasal/trasplante , Neoplasias Nasofaríngeas/terapia , Nasofaringe/cirugía , Procedimientos Quirúrgicos Otorrinolaringológicos/métodos , Paladar Blando/cirugía , Procedimientos de Cirugía Plástica/métodos , Traumatismos por Radiación/cirugía , Adulto , Femenino , Colgajos Tisulares Libres , Humanos , Carcinoma Nasofaríngeo , Nasofaringe/patología , Necrosis , Paladar Blando/patología , Traumatismos por Radiación/etiología , Traumatismos por Radiación/patología , Colgajos Quirúrgicos , Muslo
8.
Biomaterials ; 27(31): 5391-8, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16828863

RESUMEN

Encapsulation of mammalian cells within hydrogels has great utility for a variety of applications ranging from tissue engineering to cell-based assays. In this work, we present a technique to encapsulate live cells in three-dimensional (3D) microscale hydrogels (microgels) of controlled shapes and sizes in the form of harvestable free standing units. Cells were suspended in methacrylated hyaluronic acid (MeHA) or poly(ethylene glycol) diacrylate (PEGDA) hydrogel precursor solution containing photoinitiator, micromolded using a hydrophilic poly(dimethylsiloxane) (PDMS) stamp, and crosslinked using ultraviolet (UV) radiation. By controlling the features on the PDMS stamp, the size and shape of the molded hydrogels were controlled. Cells within microgels were well distributed and remained viable. These shape-specific microgels could be easily retrieved, cultured and potentially assembled to generate structures with controlled spatial distribution of multiple cell types. Further development of this technique may lead to applications in 3D co-cultures for tissue/organ regeneration and cell-based assays in which it is important to mimic the architectural intricacies of physiological cell-cell interactions.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula/métodos , Supervivencia Celular/fisiología , Hidrogeles/química , Ingeniería de Tejidos/métodos , Animales , Técnicas de Cultivo de Célula/instrumentación , Proliferación Celular , Separación Celular/métodos , Ensayo de Materiales , Ratones , Miniaturización , Células 3T3 NIH , Ingeniería de Tejidos/instrumentación
9.
JAMA Otolaryngol Head Neck Surg ; 145(11): 1082, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31580396
11.
Curr Treat Options Cardiovasc Med ; 16(7): 319, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24838687

RESUMEN

OPINION STATEMENT: The adult mammalian heart has limited capacity for regeneration, and any major injury such as a myocardial infarction results in the permanent loss of up to 1 billion cardiomyocytes. The field of cardiac cell therapy aims to replace these lost contractile units with de novo cardiomyocytes to restore lost systolic function and prevent progression to heart failure. Arguably, the ideal cell for this application is the human cardiomyocyte itself, which can electromechanically couple with host myocardium and contribute active systolic force. Pluripotent stem cells from human embryonic or induced pluripotent lineages are attractive sources for cardiomyocytes, and preclinical investigation of these cells is in progress. Recent work has focused on the efficient generation and purification of cardiomyocytes, tissue engineering efforts, and examining the consequences of cell transplantation from mechanical, vascular, and electrical standpoints. Here we discuss historical and contemporary aspects of pluripotent stem cell-based cardiac cell therapy, with an emphasis on recent preclinical studies with translational goals.

12.
PLoS One ; 7(10): e46971, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23071682

RESUMEN

The differentiation of pluripotent stem cells involves transition through a series of specific cell states. To understand these cell fate decisions, the field needs improved genetic tools for the labeling, lineage tracing and selection of specific cell types from heterogeneous differentiating populations, particularly in the human embryonic stem cell (hESC) system. We used zinc finger nuclease technology to stably insert a unique, selectable, floxed dual-fluorescence reporter transgene into the AAVS1 locus of RUES2 hESCs. This "stoplight" transgene, mTmG-2a-Puro, strongly expresses membrane-localized tdTomato red fluorescent protein until Cre-dependent recombination causes a switch to expression of membrane-localized enhanced green fluorescent protein (eGFP) and puromycin resistance. First, to validate this system in undifferentiated cells, we transduced transgenic hESCs with a lentiviral vector driving constitutive expression of Cre and observed the expected phenotypic switch. Next, to demonstrate its utility in lineage-specific selection, we transduced differentiated cultures with a lentiviral vector in which the striated muscle-specific CK7 promoter drives Cre expression. This yielded near-homogenous populations of eGFP(+) hESC-derived cardiomyocytes. The mTmg-2a-Puro hESC line described here represents a useful new tool for both in vitro fate mapping studies and the selection of useful differentiated cell types.


Asunto(s)
Células Madre Embrionarias/metabolismo , Marcación de Gen/métodos , Ingeniería Genética/métodos , Proteínas Luminiscentes/metabolismo , Transgenes/genética , Diferenciación Celular/genética , Células Cultivadas , Células Madre Embrionarias/citología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Lentivirus/genética , Proteínas Luminiscentes/genética , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Factores de Tiempo , Dedos de Zinc/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA