RESUMEN
This study aimed to reveal the influence of emotional valence and sensory modality on neural activity in response to multimodal emotional stimuli using scalp EEG. In this study, 20 healthy participants completed the emotional multimodal stimulation experiment for three stimulus modalities (audio, visual, and audio-visual), all of which are from the same video source with two emotional components (pleasure or unpleasure), and EEG data were collected using six experimental conditions and one resting state. We analyzed power spectral density (PSD) and event-related potential (ERP) components in response to multimodal emotional stimuli, for spectral and temporal analysis. PSD results showed that the single modality (audio only/visual only) emotional stimulation PSD differed from multi-modality (audio-visual) in a wide brain and band range due to the changes in modality and not from the changes in emotional degree. The most pronounced N200-to-P300 potential shifts occurred in monomodal rather than multimodal emotional stimulations. This study suggests that emotional saliency and sensory processing efficiency perform a significant role in shaping neural activity during multimodal emotional stimulation, with the sensory modality being more influential in PSD. These findings contribute to our understanding of the neural mechanisms involved in multimodal emotional stimulation.
Asunto(s)
Encéfalo , Emociones , Humanos , Sensación , Electroencefalografía , Voluntarios SanosRESUMEN
This study aimed to determine the efficiencies and mechanisms of hexavalent chromium (Cr(VI)) removal with modified sand coated by Mg-LDHs in constructed rapid infiltration system (CRIS). Mg-LDHs (MgAl-LDHs, MgFe-LDHs) were prepared by co-precipitation method and in situ coated onto the surface of original sand. Scanning Electron Microscope (SEM) and X-Ray Fluorescence Spectrometer (XRFS) were used to analyze physicochemical properties of sand/Mg-LDHs composites. Results obtained confirmed the successful LDHs-coating modification. During the purification experiments, the average removal rates of Cr(VI) were 47.62% for sand/MgAl-LDHs, 34.15% for sand/MgFe-LDHs and 11.61% for original sand, respectively. The sand/Mg-LDHs had a higher Langmuir adsorption capacity and desorption capability for Cr(VI) compared to original sand. The adsorption kinetic data of different adsorbents were better described by pseudo-second-order model. Intra-particle diffusion model was also used to elucidate the adsorption mechanism. Moreover, extracellular polymeric substances, biomass and enzymatic activity of microbes on the modified and original sand were testified and analyzed to study microbial effect on Cr(VI) removal in test columns. Through a rough economic estimation, the reagent cost of sand/MgAl-LDHs synthesis was only RMB ¥ 0.24/Kg. It could be concluded that MgAl-LDHs modified sand is an efficient and economical substrate of CRIS for Cr(VI) removal.
Asunto(s)
Cromo/análisis , Hidróxidos/química , Magnesio/química , Dióxido de Silicio/química , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Adsorción , CinéticaRESUMEN
Soil microbial communities play pivotal roles in maintaining soil health in agroecosystems. However, how the delivery of multiple microbial functions in agroecosystems is maintained remains poorly understood. This may put us at risk of incurring unexpected trade-offs between soil functions. We elucidate how interactions between soil microbes can lead to trade-offs in the functioning of agricultural soils. Interactions within soil microbial communities can result in not only positive but also neutral and negative relationships among soil functions. Altering soil conditions through soil health-improving agricultural management can alleviate these functional trade-offs by promoting the diversity and interrelationships of soil microbes, which can help to achieve more productive and sustainable agroecosystems.
Asunto(s)
Agricultura , Microbiota , Microbiología del Suelo , Suelo , Suelo/química , EcosistemaRESUMEN
High-sensitivity acceleration sensors have been independently developed by our research group to detect vibrations that are > 10 dB smaller than those detected by conventional commercial sensors. This study is the first to measure high-frequency micro-vibrations in muscle fibers, termed micro-mechanomyogram (MMG) in patients with Parkinson's disease (PwPD) using a high-sensitivity acceleration sensor. We specifically measured the extensor pollicis brevis muscle at the base of the thumb in PwPD and healthy controls (HC) and detected not only low-frequency MMG (< 15 Hz) but also micro-MMG (≥ 15 Hz), which was preciously undetectable using commercial acceleration sensors. Analysis revealed remarkable differences in the frequency characteristics of micro-MMG between PwPD and HC. Specifically, during muscle power output, the low-frequency MMG energy was greater in PwPD than in HC, while the micro-MMG energy was smaller in PwPD compared to HC. These results suggest that micro-MMG detected by the high-sensitivity acceleration sensor provides crucial information for distinguishing between PwPD and HC. Moreover, a deep learning model trained on both low-frequency MMG and micro-MMG achieved a high accuracy (92.19%) in classifying PwPD and HC, demonstrating the potential for a diagnostic system for PwPD using micro-MMG.
Asunto(s)
Aprendizaje Profundo , Enfermedad de Parkinson , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/fisiopatología , Humanos , Masculino , Anciano , Femenino , Persona de Mediana Edad , Miografía/métodos , Vibración , Acelerometría/métodos , Acelerometría/instrumentación , Aceleración , Estudios de Casos y Controles , Músculo Esquelético/fisiopatologíaRESUMEN
An increasing number of studies of above-belowground interactions provide a fundamental basis for our understanding of the coexistence between plant and soil communities. However, we lack empirical evidence to understand the directionality of drivers of plant and soil communities under natural conditions: 'Are soil microorganisms driving plant community functioning or do they adapt to the plant community?' In a field experiment in an early successional dune ecosystem, we manipulated soil communities by adding living (i.e., natural microbial communities) and sterile soil inocula, originating from natural ecosystems, and examined the annual responses of soil and plant communities. The experimental manipulations had a persistent effect on the soil microbial community with divergent impacts for living and sterile soil inocula. The plant community was also affected by soil inoculation, but there was no difference between the impacts of living and sterile inocula. We also observed an increasing convergence of plant and soil microbial composition over time. Our results show that alterations in soil abiotic and biotic conditions have long-term effects on the composition of both plant and soil microbial communities. Importantly, our study provides direct evidence that soil microorganisms are not "drivers" of plant community dynamics. We found that soil fungi and bacteria manifest different community assemblies in response to treatments. Soil fungi act as "passengers," that is, soil microorganisms reflect plant community dynamics but do not alter it, whereas soil bacteria are neither "drivers" nor "passengers" of plant community dynamics in early successional ecosystems. These results are critical for understanding the community assembly of plant and soil microbial communities under natural conditions and are directly relevant for ecosystem management and restoration.
Asunto(s)
Bacterias , Ecosistema , Hongos , Plantas , Microbiología del Suelo , Hongos/fisiología , Bacterias/clasificación , Plantas/microbiologíaRESUMEN
Emotion recognition is crucial in understanding human affective states with various applications. Electroencephalography (EEG)-a non-invasive neuroimaging technique that captures brain activity-has gained attention in emotion recognition. However, existing EEG-based emotion recognition systems are limited to specific sensory modalities, hindering their applicability. Our study innovates EEG emotion recognition, offering a comprehensive framework for overcoming sensory-focused limits and cross-sensory challenges. We collected cross-sensory emotion EEG data using multimodal emotion simulations (three sensory modalities: audio/visual/audio-visual with two emotion states: pleasure or unpleasure). The proposed framework-filter bank adversarial domain adaptation Riemann method (FBADR)-leverages filter bank techniques and Riemannian tangent space methods for feature extraction from cross-sensory EEG data. Compared with Riemannian methods, filter bank and adversarial domain adaptation could improve average accuracy by 13.68% and 8.36%, respectively. Comparative analysis of classification results proved that the proposed FBADR framework achieved a state-of-the-art cross-sensory emotion recognition performance and reached an average accuracy of 89.01% ± 5.06%. Moreover, the robustness of the proposed methods could ensure high cross-sensory recognition performance under a signal-to-noise ratio (SNR) ≥ 1 dB. Overall, our study contributes to the EEG-based emotion recognition field by providing a comprehensive framework that overcomes limitations of sensory-oriented approaches and successfully tackles the difficulties of cross-sensory situations.
RESUMEN
The study aimed to synthesize novel zeolite substrates modified with four types of ZnAl-LDHs including Cl-LDHs(1:1), Cl-LDHs(3:1), CO3-LDHs(1:1), and CO3-LDHs(3:1); investigate Cr(VI) removal efficiencies in lab-scale constructed wetlands (CWs); and explore the effect of different Zn/Al ratios and intercalated anions on the removal efficiencies of Cr(VI) by modified zeolite. Different ZnAl-LDHs were prepared by co-precipitation method and coated onto the surface of original zeolite. Field emission scanning electron microscope and energy dispersive spectrometer were used to analyze physicochemical properties of zeolite/ZnAl-LDHs. Obtained results confirmed the successful LDHs-coating modification. The results of both X-ray diffraction and Fourier transform infrared suggested that the typical diffraction peak and functional groups of ZnAl-LDHs were detected in modified zeolites, and the peak of CO32- in CO3-LDHs at 1362 cm-1 was stronger and sharper than Cl-LDHs. It could be demonstrated by above results that the synthesis crystallinity and coating effect of CO3-LDHs was better than Cl-LDHs. Furthermore, it could be found that under the condition of same intercalated anion, LDHs with metal molar ratio of 1:1 had better crystallinity than LDHs with metal molar ratio of 3: 1. Subsequent determination of the removal performance of Cr(VI) by purification experiments revealed that zeolite/Cl-LDHs(3:1) showed the best Cr(VI) removal performance, and the removal rate of Cr(VI) was improved by 32.81% compared with the original zeolite, which suggested that could be an efficient substrate of CWs for Cr(VI) removal. The high crystallinity indicated that the structure of LDHs was stable and it was difficult to remove Cr(VI) by ion exchange. The above explained why the Cr(VI) removal efficiency by zeolite/Cl-LDHs is superior to that by zeolite/CO3-LDHs under the condition of same metal molar ratio. With the increase of metal molar ratio, the charge density of LDHs layers and intercalated anion increased, thus enhancing the electrostatic attraction of LDHs layers to Cr(VI) and the interlayer anion exchange capacity. However, the effect of charge density on Cr(VI) removal efficiency may be greater than crystallinity on removal efficiency, which could be responsible for the fact that zeolite/ZnAl-LDHs(3:1) had better Cr(VI) removal efficiency than zeolite/ZnAl-LDHs(1:1) under the condition of same intercalated anion.
Asunto(s)
Zeolitas , Zeolitas/química , Humedales , Cromo/química , Hidróxidos/química , Metales , Zinc/química , AdsorciónRESUMEN
To improve the adsorption performance of Cd(II) by maifanite in constructed rapid infiltration systems (CRIS), Mg-layered double hydroxides (MgAl-LDHs, MgFe-LDHs) are prepared by a co-precipitation method and in-situ coated on the surface of original maifanite. Characterization of the successful LDHs-coating modification is realized by the following: scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Brunauer Emmett Teller (BET). In the purification experiments, the average removal rates of Cd(II) were 97.66% for maifanite/MgAl-LDHs and 97.54% for maifanite/MgFe-LDHs, approximately 11% greater than for the original maifanite. Isothermal adsorption experiments and adsorption kinetic experiments were conducted to explore the Cd(II) adsorption mechanism. The modified maifanite demonstrated a higher Langmuir adsorption capacity and stronger surface bond energies compared to the original maifanite. The adsorption type of Cd(II) by maifanite/Mg-LDHs and original maifanite was monolayer adsorption based mainly on chemical adsorption. Furthermore, the extracellular polymeric substances and dehydrogenase activities of the microorganisms were measured and analyzed to study the effect of microorganisms on the removal of Cd(II) in the test columns. High-throughput sequencing technology was also applied to analyze the composition and diversity of bacterial communities. Based on a simple estimation, the synthesis cost of maifanite/MgAl-LDHs was only ¥ 0.33/Kg. In brief, maifanite/Mg-LDHs is an efficient and economical substrate for a CRIS for Cd(II) removal.
Asunto(s)
Cadmio/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Hidróxidos/química , Manganeso , Modelos QuímicosRESUMEN
Atrial septal defect (ASD) is a common structural congenital heart disease. With the development of interventional closure devices and transcatheter techniques, interventional closure therapy has become the most well-accepted therapeutic alternative worldwide, as it offers a number of advantages over conventional therapies such as improved safety, easier operation, lower complication rates and invasiveness, and shorter anesthetic time and hospitalizations. During the past decades, various types of occluders based on nondegradable shape memory alloys have been used in clinical applications. Considering that the permanent existence of foreign nondegradable materials in vivo can cause many potential complications in the long term, the research and development of biodegradable occluders has emerged as a crucial issue for interventional treatment of ASD. This review aims to summarize partially or fully biodegradable occlusion devices currently reported in the literature from the aspects of design, construction, and evaluation of animal experiments. Furthermore, a comparison is made on the advantages and disadvantages of the materials used in biodegradable ASD occlusion devices, followed by an analysis of the problems and limitations of the occlusion devices. Finally, several strategies are proposed for future development of biodegradable cardiac septal defect occlusion devices. STATEMENT OF SIGNIFICANCE: Although occlusion devices based on nondegradable alloys have been widely used in clinical applications and saved numerouspatients, biodegradable occlusion devices may offer some advantages such as fewer complications, acceptable biocompatibility, and particularly temporary existence, thereby leaving "native" tissue behind, which will certainly become the development trend in the long term. This review summarizes almost all partially or fully biodegradable occlusion devices currently reported in the literature from the aspects of design, construction, and evaluation of animal experiments. Furthermore, a comparison is made on the advantages and disadvantages of the materials used in biodegradable ASD occlusion devices, followed by an analysis of the problems and limitations of the occlusion devices. Finally, several strategies are proposed for future development of biodegradable cardiac septal defect occlusion devices.
Asunto(s)
Materiales Biocompatibles/química , Defectos del Tabique Interatrial/cirugía , Dispositivo Oclusor Septal , Animales , Humanos , Poliésteres/químicaRESUMEN
Inferior vena cava filter has been increasingly applied in clinical practice to prevent pulmonary embolism. Nowadays, various complications after implanting conventional filters seriously hinder clinical applications. Therefore, in this paper, a novel biodegradable inferior vena cava filter was designed based on biodegradable materials, which is an hourglass-like filter anchored inside a stent structure fixed by connecting fibers. Firstly, mechanical tests in crimp were performed to study the expansion properties of the filter, showing that the biodegradable inferior vena cava filter could achieve self-expansion easily. Furthermore, the biodegradable inferior vena cava filters and fibers were incubated in phosphate buffer media (pH = 7.4 ± 0.2) at 37°C for six months. Scanning electron microscope micrograph showed that the stents exhibited no significant dimensional and structural changes and had enough radial force to support the vessel. During the degradation period, the results of scanning electron microscope, gel permeation chromatography, differential scanning calorimetry and tensile strength analysis confirmed that the degradation rate of the hourglass-like filter was faster than the connecting fibers, achieving progressive degradation and thus avoiding the polymer fragments from blocking vessel. Cytotoxicity and hemolysis assay demonstrated good biocompatibility of the filter. For 5 mm × 10 mm sized thrombus, in vitro simulated thrombus capture test showed that the mean trapping efficiency of the filter was 90%, which was comparable to traditional inferior vena cava filter. In conclusion, all results exhibited that the as-designed biodegradable inferior vena cava filter has a potential in clinical application for patients who are at temporary high risk of venous thromboembolism.
Asunto(s)
Materiales Biocompatibles , Filtros de Vena Cava , Animales , Materiales Biocompatibles/efectos adversos , Materiales Biocompatibles/química , Línea Celular , Supervivencia Celular , Hemólisis , Ensayo de Materiales , Ratones , Diseño de Prótesis , Conejos , Trombosis/prevención & control , Filtros de Vena Cava/efectos adversosRESUMEN
In this study, MgAl-LDHs and MgFe-LDHs were synthesized via co-precipitation method and in situ coated on pre-washed zeolites through dipping process in beaker. The obtained modified zeolites and original zeolites were utilized as substrates of constructed rapid infiltration systems (CRIS) to remove hexavalent chromium (Cr(VI)) in wastewater. Micro-morphology features and chemical composition of zeolites before and after modification were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence spectrometer (XRF). The SEM, XRD, and XRF results demonstrated the feasibility of LDHs coated on the surface of the original zeolites. Purification experiments in simulated CRIS showed that the Cr(VI) removal rates of zeolites/MgAl-LDHs increased by 110.03% on average every concentration (0.5-16 mg L-1) compared with the original zeolites under 24-h HRT. The adsorption capacity of zeolites/MgAl-LDHs reached 66.98 mg kg-1 at 32 mg L-1 initial Cr(VI) concentration, which is nearly twice that of the original zeolites (33.24 mg kg-1) and 1.5 times higher than that of zeolites/MgFe-LDHs (42.01 mg kg-1). Isothermal adsorption tests showed that the Freundlich isotherm equations gave better fitting to the adsorption process. And zeolites/MgAl-LDHs showed a best fit with pseudo-second-order model which meant that the adsorption of Cr(VI) by zeolites/MgAl-LDHs was dominated by chemisorption. Thermodynamic parameters showed that the process of adsorption for the three substrates was spontaneous and endothermic intrinsically. Zeolites/MgAl-LDHs also displayed nearly 60% desorption rate with low concentration eluent (0.01 mol L-1 NaCl). Therefore, zeolites/MgAl-LDHs were chosen out as an optimal substrate for removing Cr(VI) from wastewater in CRIS. Graphical Abstract.
Asunto(s)
Cromo/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Zeolitas/química , Adsorción , Cromo/química , Cinética , Hidróxido de Magnesio/química , Microscopía Electrónica de Rastreo , Espectrometría por Rayos X , Termodinámica , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Difracción de Rayos XRESUMEN
Under alkaline conditions, the hydrothermal coprecipitation method was used to form different layered double hydroxides (LDHs) by combining different bivalent and trivalent metal compounds, such as ZnCl2, MgCl2, AlCl3, and FeCl3, and then LDHs were coated on the surface of the original maifanite. The effect of LDHs coating-modified maifanite on the improvement of Cr(â ¥) adsorption in water was studied using isothermal adsorption, desorption, non-isothermal adsorption, adsorption kinetics, pH, and competitive adsorption tests, respectively. The results show that the maximum theoretical adsorption capacity of modified maifanite for Cr(â ¥) is close to ten times that of original maifanite at 15â. The adsorption effect of ZnAl-LDHs coating-loaded modified maifanite is better than that of other LDHs-coating modified maifanites. In contrast, the results of the desorption experiments show that maifanite coated with LDHs enhances the reuse of substrates. The thermodynamic parameters of the substrate for Cr(â ¥) adsorption in the experiment were â³Gθ < 0, â³Hθ < 0, â³Sθ > 0, indicating that the substrate adsorption process of Cr(â ¥) is spontaneous and exothermic. Based on the adsorption kinetics study, the adsorption process of Cr(â ¥) by maifanite could be fitted using a pseudo-secondary reaction process. The adsorption type was mainly chemisorption. By selecting the suitable metal ion combination method to prepare different LDHs-coating modified maifanites, the Cr(â ¥) performance can effectively be improved.
RESUMEN
Schizandrin B is extracted from Schisandra chinensis (Turcz.) Baill. This study evaluated the photoprotective effect of Schizandrin B on oxidative stress injury of the skin caused by UVB-irradiation and the molecular mechanism of the photoprotective effect of Schizandrin B, and we firstly found that Schizandrin B could block Cox-2, IL-6 and IL-18 signal pathway to protect damage of skin cells given by UVB-irradiation. In the research, we found that Schizandrin B can attenuate the UVB-induced toxicity on keratinocytes and dermal fibroblasts in human body, and can outstandingly eliminated intracellular ROS produced by UVB-irradiation. These results demonstrate that Schizandrin B can regulate the function of decreasing intracellular SOD's activity and increasing the expression level of MDA in HaCaT cells result from the guidance of UVB, and it markedly reduced the production of inflammatory factors such as Cox-2, IL-6 or IL-18, decreased the expression level of MMP-1, and interdicted degradation process of collagens in UVB-radiated cells. Therefore, skin keratinocytes can be effectively protected from UVB-radiated damage by Schizandrin B, and UVB-irradiation caused inflammatory responses can be inhibited by attenuating process of ROS generating.