Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38220573

RESUMEN

Diabetes mellitus (DM) causes damage to the central nervous system, resulting in cognitive impairment. Fibroblast growth factor 21 (FGF21) exhibits the potential to alleviate neurodegeneration. However, the therapeutic effect of intracerebroventricular (i.c.v) FGF21 infusion on diabetes-induced cognitive decline (DICD) and its potential mechanisms remain unclear. In this study, the impact of FGF21 on DICD was explored, and 1H nuclear magnetic resonance (NMR)-based metabolomics plus 13C NMR spectroscopy in combine with intravenous [1-13C]-glucose infusion were used to investigate the underlying metabolic mechanism. Results revealed that i.c.v FGF21 infusion effectively improved learning and memory performance of DICD mice; neuron loss and apoptosis in hippocampus and cortex were significantly blocked, suggesting a potential neuroprotective role of FGF21 in DICD. Metabolomics results revealed that FGF21 modulated DICD metabolic alterations related to glucose and neurotransmitter metabolism, which are characterized by distinct recovered enrichment of [3-13C]-lactate, [3-13C]-aspartate, [4-13C]-glutamine, [3-13C]-glutamine, [4-13C]-glutamate, and [4-13C]- γ-aminobutyric acid (GABA) from [1-13C]-glucose. Moreover, diabetes-induced neuron injury and metabolic dysfunctions might be mediated by PI3K/AKT/GSK-3ß signaling pathway inactivation in the hippocampus and cortex, which were activated by i.c.v injection of FGF21. These findings indicate that i.c.v FGF21 infusion exerts its neuroprotective effect on DICD by remodeling cerebral glucose and neurotransmitter metabolism by activating the PI3K/AKT/GSK-3ß signaling pathway.


Asunto(s)
Disfunción Cognitiva , Diabetes Mellitus , Factores de Crecimiento de Fibroblastos , Ratones , Animales , Glutamina/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas , Ácido Glutámico/metabolismo , Glucosa/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Neurotransmisores
2.
Small ; 20(24): e2310529, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38148294

RESUMEN

2D organic-inorganic hybrid perovskites (OIHPs) have become one of the hottest research topics due to their excellent environmental stability and unique optoelectronic properties. Recently, the ferroelectricity and thermochromism of 2D OIHPs have attracted increasing interests. Integrating ferroelectricity and thermochromism into perovskites can significantly promote the development of multichannel intelligent devices. Here, a novel 2D Dion-Jacobson OIHP of the formula (3AMP)PbI4 (where 3AMP is 3-(aminomethyl)pyridinium) is reported, which has a remarkable spontaneous polarization value (Ps) of 15.6 µC cm-2 and interesting thermochromism. As far it is known, such a large Ps value is the highest for 2D OIHPs recorded so far. These findings will inspire further exploration and application of multifunctional perovskites.

3.
FASEB J ; 37(9): e23134, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37561545

RESUMEN

3-Phosphoinositide-dependent protein kinase-1 (Pdk1) as a serine/threonine protein kinase plays a critical role in multiple signaling pathways. Analysis of the gene expression omnibus database showed that Pdk1 was significantly downregulated in patients with heart diseases. Gene set enrichment analysis of the proteomics dataset identified apoptotic- and metabolism-related signaling pathways directly targeted by Pdk1. Previously, our research indicated that Pdk1 deletion-induced metabolic changes might be involved in the pathogenesis of heart failure; however, the underlying mechanism remains elusive. Here, we demonstrated that deficiency of Pdk1 resulted in apoptosis, oxidative damage, and disturbed metabolism, both in vivo and in vitro. Furthermore, profiling of metabonomics by 1 H-NMR demonstrated that taurine was the major differential metabolite in the heart of Pdk1-knockout mice. Taurine treatment significantly reduced the reactive oxygen species production and apoptosis, improved cardiac function, and prolonged the survival time in Pdk1 deficient mice. Proteomic screening identified solute carrier family 6 member 6 (Slc6a6) as the downstream that altered taurine levels in Pdk1-expression cells. Consistently, cellular apoptosis and oxidative damage were rescued by Slc6a6 in abnormal Pdk1 expression cells. These findings collectively suggest that Pdk1 deficiency induces heart failure via disturbances in taurine homeostasis, triggered by Slc6a6.


Asunto(s)
Insuficiencia Cardíaca , Proteínas Quinasas , Animales , Ratones , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Homeostasis , Ratones Noqueados , Proteómica , Taurina , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética
4.
Pediatr Res ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582946

RESUMEN

BACKGROUND: Growth hormone deficiency(GHD) and idiopathic short stature(ISS) are the primary causes of short stature in children. Animal experiments have revealed a link between growth hormone(GH), gut microbiota and metabolism, however, limited information is available from human trials. METHODS: Fecal samples collected from GHD (n = 36), ISS (n = 32) and healthy control (HC) children(n = 16) were subjected to microbiome (16 S rRNA gene sequencing) and metabolome (nuclear magnetic resonance,NMR) analyses. RESULTS: GHD, ISS and HC exhibit distinct differences in beta diversity of gut microbiota.In addition, short stature (GHD and ISS) exhibit higher relative abundance of Prevotellaceae_NK3B31_group at genus level compared to HC, whereas Rodentibacter, Rothia, and Pelomonas showed lower abundance. Additionally,Fusobacterium_mortiferum was identified as the characteristic species of GHD. Moreover, glucose metabolism, pyruvate metabolism and pyrimidine metabolism might play significant roles for distinguishing between GHD and normal GH groups (ISS and HC). Furthermore, a disease prediction model based on differential bacteria and metabolites between GHD and ISS exhibited high diagnostic value. CONCLUSION: These findings highlight the characteristics of different GH levels on the gut microbiota and metabolism in children, providing novel perspectives for early diagnosis and prognostic treatment of short stature with abnormal GH levels. IMPACT: The key message of our study is to identify human-relevant gut microbiota and host metabolic patterns that are interfered with growth hormone levels, and to develop biomarker models to identify short stature associated with growth hormone deficiency. We used idiopathic short stature as a control group for growth hormone deficiency, complementing the absence of height as a factor in the existing literature. Our study ultimately hopes to shed new light on the diagnosis and treatment of short stature children associated with growth hormone deficiency.

5.
J Proteome Res ; 22(8): 2558-2569, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37432907

RESUMEN

Community-acquired pneumonia (CAP) is a significant threat to human health and the leading cause of acute respiratory distress syndrome (ARDS). We aimed to reveal the metabolic profiling whether can be used for assessing CAP with or without ARDS (nARDS) and therapeutic effects on CAP patients after treatment. Urine samples were collected at the onset and recovery periods, and metabolomics was employed to identify robust biomarkers. 19 metabolites were significantly changed in the ARDS relative to nARDS, mainly involving purines and fatty acids. After treatment, 7 metabolites in the nARDS and 14 in the ARDS were found to be significantly dysregulated, including fatty acids and amino acids. In the validation cohort, we observed that the biomarker panel consisted of N2,N2-dimethylguanosine, 1-methyladenosine, 3-methylguanine, 1-methyladenosine, and uric acid exhibited better AUCs of 0.900 than pneumonia severity index and acute physiology and chronic health evaluation II (APACHE II) scores between the ARDS and nARDS. Combining L-phenylalanine, phytosphingosine, and N-acetylaspartylglutamate as biomarkers for discriminating the nARDS and ARDS patients after treatment exhibited good AUCs of 0.811 and 0.821, respectively. The metabolic pathway and defined biomarkers may serve as crucial indicators for predicting the development of ARDS in CAP patients and for assessing therapeutic effects.


Asunto(s)
Infecciones Comunitarias Adquiridas , Neumonía , Síndrome de Dificultad Respiratoria , Humanos , Neumonía/diagnóstico , Metabolómica , Biomarcadores , Síndrome de Dificultad Respiratoria/diagnóstico , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/metabolismo , Ácidos Grasos , Purinas , Infecciones Comunitarias Adquiridas/diagnóstico , Infecciones Comunitarias Adquiridas/complicaciones
6.
J Proteome Res ; 22(6): 1649-1659, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37126732

RESUMEN

Exercise plays a beneficial role in the management of Alzheimer's disease (AD), but its effects on brain metabolism are still far from being understood. Here, we examined behavioral changes of APP/PS1 mice after high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) and analyzed metabolomics profiles in the hippocampus, cortex, and hypothalamus by using nuclear magnetic resonance spectroscopy to explore potential metabolic mechanisms. The results demonstrate that both HIIT and MICT alleviated anxiety/depressive-like behaviors as well as learning and memory impairments of AD mice. Metabolomics analysis reveals that energy metabolism, neurotransmitter metabolism, and membrane metabolism were significantly altered in all three brain regions after both types of exercises. Amino acid metabolism was detected to be affected in the cortex and hypothalamus after HIIT and in the hippocampus and hypothalamus after MICT. However, only HIIT significantly altered astrocyte-neuron metabolism in the hippocampus and hypothalamus of AD mice. Therefore, our study suggests that exercise can shape brain metabolism of AD mice in a region- and exercise-specific manner, indicating that the precise modification of brain metabolism by a specific type of exercise might be a novel perspective for the prevention and treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Ratones , Animales , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Ratones Transgénicos , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Hipocampo/metabolismo
7.
J Neuroinflammation ; 20(1): 166, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454113

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a respiratory failure syndrome that can cause many complications, impacting patients' quality of life. Behavioral and cognitive disorders have attracted increasing attention in patients with ARDS, but its potential mechanisms are still elusive. METHODS: Herein we transferred the faecal microbiota from patients with ARDS caused by community-acquired pneumonia (CAP) to antibiotics-treated recipient male mice to explore the microbiota-gut-brain mechanisms. Behavioral functions of mice were evaluated by the open field test, Morris water maze and Y-maze test. The structure and composition of the gut microbiota were analyzed by using 16S rRNA sequencing analysis. Microglia, astrocyte and neuron in the cortex and hippocampus were examined via immunofluorescent staining. RESULTS: We found that the major characteristic of the intestinal flora in ARDS/CAP patients was higher abundances of Gram-negative bacteria than normal controls. The gut microbiota derived from ARDS/CAP patients promoted neuroinflammation and behavioral dysfunctions in mice. Mice who underwent fecal transplant from ARDS/CAP patients had increased systemic lipopolysaccharide (LPS), systemic inflammation, and increased colonic barrier permeability. This may adversely impact blood barrier permeability and facilitate microglia activation, astrocyte proliferation, and loss of neurons. CONCLUSIONS: Our study proposes the role of the microbiota-gut-brain crosstalk on ARDS/CAP-associated behavioral impairments and suggests the gut microbiota as a potential target for the protection of brain health in ARDS patients in clinical practice.


Asunto(s)
Disfunción Cognitiva , Microbioma Gastrointestinal , Neumonía , Síndrome de Dificultad Respiratoria , Masculino , Ratones , Animales , Microbioma Gastrointestinal/fisiología , Enfermedades Neuroinflamatorias , ARN Ribosómico 16S/genética , Calidad de Vida , Síndrome de Dificultad Respiratoria/microbiología , Ratones Endogámicos C57BL
8.
Respir Res ; 24(1): 156, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37312153

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is one of the world's leading causes of death and a major chronic respiratory disease. Aerobic exercise, the cornerstone of pulmonary rehabilitation, improves prognosis of COPD patients; however, few studies have comprehensively examined the changes in RNA transcript levels and the crosstalk between various transcripts in this context. This study identified the expression of RNA transcripts in COPD patients who engaged in aerobic exercise training for 12 weeks, and further constructions of the possible RNAs networks were made. METHODS: Peripheral blood samples for all four COPD patients who benefited from 12 weeks of PR were collected pre- and post-aerobic exercises and evaluated for the expression of mRNA, miRNA, lncRNA, and circRNA with high-throughput RNA sequencing followed by GEO date validation. In addition, enrichment analyses were conducted on different expressed mRNAs. LncRNA-mRNA and circRNA-mRNA coexpression networks, as well as lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA competing expression networks (ceRNAs) in COPD were constructed. RESULTS: We identified and analyzed the differentially expressed mRNAs and noncoding RNAs in the peripheral blood of COPD patients' post-exercise. Eighty-six mRNAs, 570 lncRNAs, 8 miRNAs, and 2087 circRNAs were differentially expressed. Direct function enrichment analysis and Gene Set Variation Analysis showed that differentially expressed RNAs(DE-RNAs) correlated with several critical biological processes such as chemotaxis, DNA replication, anti-infection humoral response, oxidative phosphorylation, and immunometabolism, which might affect the progression of COPD. Some DE-RNAs were validated by Geo databases and RT-PCR, and the results were highly correlated with RNA sequencing. We constructed ceRNA networks of DE-RNAs in COPD. CONCLUSIONS: The systematic understanding of the impact of aerobic exercise on COPD was achieved using transcriptomic profiling. This research offers a number of potential candidates for clarifying the regulatory mechanisms that exercise has on COPD, which could ultimately help in understanding the pathophysiology of COPD.


Asunto(s)
MicroARNs , Enfermedad Pulmonar Obstructiva Crónica , ARN Largo no Codificante , Humanos , Proyectos Piloto , Transcriptoma , ARN Circular/genética , ARN Largo no Codificante/genética , MicroARNs/genética , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/terapia , ARN Mensajero/genética , Ejercicio Físico
9.
J Nanobiotechnology ; 21(1): 434, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980476

RESUMEN

Manganese-based nanomaterials (Mn-nanomaterials) hold immense potential in cancer diagnosis and therapies. However, most Mn-nanomaterials are limited by the low sensitivity and low efficiency toward mild weak acidity (pH 6.4-6.8) of the tumor microenvironment, resulting in unsatisfactory therapeutic effect and poor magnetic resonance imaging (MRI) performance. This study introduces pH-ultrasensitive PtMn nanoparticles as a novel platform for enhanced ferroptosis-based cancer theranostics. The PtMn nanoparticles were synthesized with different diameters from 5.3 to 2.7 nm with size-dominant catalytic activity and magnetic relaxation, and modified with an acidity-responsive polymer to create pH-sensitive agents. Importantly, R-PtMn-1 (3 nm core) presents "turn-on" oxidase-like activity, affording a significant enhancement ratio (pH 6.0/pH 7.4) in catalytic activity (6.7 folds), compared with R-PtMn-2 (4.2 nm core, 3.7 folds) or R-PtMn-3 (5.3 nm core, 2.1 folds), respectively. Moreover, R-PtMn-1 exhibits dual-mode contrast in high-field MRI. R-PtMn-1 possesses a good enhancement ratio (pH 6.4/pH 7.4) that is 3 or 3.2 folds for T1- or T2-MRI, respectively, which is higher than that of R-PtMn-2 (1.4 or 1.5 folds) or R-PtMn-3 (1.1 or 1.2 folds). Moreover, their pH-ultrasensitivity enabled activation specifically within the tumor microenvironment, avoiding off-target toxicity in normal tissues during delivery. In vitro studies demonstrated elevated intracellular reactive oxygen species production, lipid peroxidation, mitochondrial membrane potential changes, malondialdehyde content, and glutathione depletion, leading to enhanced ferroptosis in cancer cells. Meanwhile, normal cells remained unaffected by the nanoparticles. Overall, the pH-ultrasensitive PtMn nanoparticles offer a promising strategy for accurate cancer diagnosis and ferroptosis-based therapy.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Manganeso/química , Medicina de Precisión , Medios de Contraste/química , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Imagen por Resonancia Magnética/métodos , Nanopartículas/química , Línea Celular Tumoral , Microambiente Tumoral
10.
COPD ; 20(1): 119-125, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36943093

RESUMEN

Chronic obstructive pulmonary disease (COPD) kills more than 3 million people worldwide every year. Despite progress in the treatment of symptoms and prevention of acute exacerbations, few advances have been made to ameliorate disease progression or affect mortality. Exercise plays a positive role in the prevention and treatment of diaphragm dysfunction in COPD, and the changes in diaphragm structure and function induced by exercise are closely related to the regulation of oxidative stress. But the mechanism remains unclear. So the aim of this study was to reveal the therapeutic mechanism of exercise to COPD using both in vivo and in vitro experiments. In this study, cigarette smoke (CS) induced COPD mice model, treadmill aerobic training for COPD mice were constructed and cigarette smoke extract (CSE) induced bronchial epithelial cells (BECs) model were used for COPD study. Bioinformatics analysis, luciferase reporting analysis, and RT-qPCR detection were used to clarify the interacted relationship among lncRNA, miRNA, and mRNA. ROS, inflammatory cytokines expression, and EMT relative protein α-SMA were detected using immunofluorescence and ELISA detection. The result shows that exercise ameliorates COPD induced lung injury by inhibit ROS, inflammation, and epithelial-mesenchymal transition (EMT) relative protein α-SMA expression. RT-qPCR detection shows that lnc-H19 expression was increased in lung tissues of COPD mice. Exercise decreased COPD induced lnc-H19 expression. Downregulation lnc-H19 inhibits COPD mediated lung injury. Bioinformatics analysis and luciferase reporting analysis confirmed that miR-181 and PDCD4 were downstream targets of lnc-H19. Upregulation of PDCD4 or downregulation of miR-181 reversed the protective effect of si-lnc-H19 to BECs after exposure to CSE. In conclusion, lncRNA H19 contributes to smoke-related chronic obstructive pulmonary disease by targeting miR-181/PDCD4 Axis.


Asunto(s)
Lesión Pulmonar , MicroARNs , Enfermedad Pulmonar Obstructiva Crónica , ARN Largo no Codificante , Animales , Ratones , MicroARNs/genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/terapia , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Especies Reactivas de Oxígeno , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Fumar
11.
Biochem Biophys Res Commun ; 604: 130-136, 2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-35303679

RESUMEN

Alzheimer's disease (AD) has been considered to be a systematic metabolic disorder, but little information is available about metabolic changes in the urine and feces. In this study, we investigated urinary and faecal metabolic profiles in amyloid precursor protein/presenilin 1 (APP/PS1) mice at 3 and 9 months of age (3 M and 9 M) and age-matched wild-type (WT) mice by using 1H NMR-based metabolomics, and aimed to explore changes in metabolic pathways during amyloid pathology progression and identify potential metabolite biomarkers at earlier stage of AD. The results show that learning and memory abilities were impaired in APP/PS1 mice relative to WT mice at 9 M, but not at 3 M. However, metabolomics analysis demonstrates that AD disrupted metabolic phenotypes in the urine and feces of APP/PS1 mice at both 3 M and 9 M, including amino acid metabolism, microbial metabolism and energy metabolism. In addition, several potential metabolite biomarkers were identified for discriminating AD and WT mice prior to cognitive decline with the AUC values from 0.755 to 0.971, such as taurine, hippurate, urea and methylamine in the urine as well as alanine, leucine and valine in the feces. Therefore, our results not only confirmed AD as a metabolic disorder, but also contributed to the identification of potential biomarkers at earlier stage of AD.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Metabolómica , Presenilina-1 , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/orina , Precursor de Proteína beta-Amiloide/genética , Animales , Biomarcadores/análisis , Biomarcadores/orina , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/orina , Modelos Animales de Enfermedad , Heces , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Presenilina-1/genética
12.
J Transl Med ; 20(1): 275, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35715864

RESUMEN

BACKGROUND: Prostate cancer (PCa) is the second most prevalent cancer in males worldwide, yet detecting PCa and its metastases remains a major challenging task in clinical research setups. The present study aimed to characterize the metabolic changes underlying the PCa progression and investigate the efficacy of related metabolic panels for an accurate PCa assessment. METHODS: In the present study, 75 PCa subjects, 62 PCa patients with bone metastasis (PCaB), and 50 benign prostatic hyperplasia (BPH) patients were enrolled, and we performed a cross-sectional metabolomics analysis of serum samples collected from these subjects using a 1H nuclear magnetic resonance (NMR)-based metabolomics approach. RESULTS: Multivariate analysis revealed that BPH, PCa, and PCaB groups showed distinct metabolic divisions, while univariate statistics integrated with variable importance in the projection (VIP) scores identified a differential metabolite series, which included energy, amino acid, and ketone body metabolism. Herein, we identified a series of characteristic serum metabolic changes, including decreased trends of 3-HB and acetone as well as elevated trends of alanine in PCa patients compared with BPH subjects, while increased levels of 3-HB and acetone as well as decreased levels of alanine in PCaB patients compared with PCa. Additionally, our results also revealed the metabolic panels of discriminant metabolites coupled with the clinical parameters (age and body mass index) for discrimination between PCa and BPH, PCaB and BPH, PCaB and PCa achieved the AUC values of 0.828, 0.917, and 0.872, respectively. CONCLUSIONS: Overall, our study gave successful discrimination of BPH, PCa and PCaB, and we characterized the potential metabolic alterations involved in the PCa progression and its metastases, including 3-HB, acetone and alanine. The defined biomarker panels could be employed to aid in the diagnosis and classification of PCa in clinical practice.


Asunto(s)
Hiperplasia Prostática , Neoplasias de la Próstata , Acetona , Alanina , Estudios Transversales , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Metabolómica/métodos , Hiperplasia Prostática/diagnóstico , Neoplasias de la Próstata/patología , Espectroscopía de Protones por Resonancia Magnética
13.
Respir Res ; 23(1): 172, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35761396

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a challenging clinical problem. Discovering the potential metabolic alterations underlying the ARDS is important to identify novel therapeutic target and improve the prognosis. Serum and urine metabolites can reflect systemic and local changes and could help understanding metabolic characterization of community-acquired pneumonia (CAP) with ARDS. METHODS: Clinical data of patients with suspected CAP at the First Affiliated Hospital of Wenzhou Medical University were collected from May 2020 to February 2021. Consecutive patients with CAP were enrolled and divided into two groups: CAP with and without ARDS groups. 1H nuclear magnetic resonance-based metabolomics analyses of serum and urine samples were performed before and after treatment in CAP with ARDS (n = 43) and CAP without ARDS (n = 45) groups. Differences metabolites were identifed in CAP with ARDS. Furthermore, the receiver operating characteristic (ROC) curve was utilized to identify panels of significant metabolites for evaluating therapeutic effects on CAP with ARDS. The correlation heatmap was analyzed to further display the relationship between metabolites and clinical characteristics. RESULTS: A total of 20 and 42 metabolites were identified in the serum and urine samples, respectively. Serum metabolic changes were mainly involved in energy, lipid, and amino acid metabolisms, while urine metabolic changes were mainly involved in energy metabolism. Elevated levels of serum 3-hydroxybutyrate, lactate, acetone, acetoacetate, and decreased levels of serum leucine, choline, and urine creatine and creatinine were detected in CAP with ARDS relative to CAP without ARDS. Serum metabolites 3-hydroxybutyrate, acetone, acetoacetate, citrate, choline and urine metabolite 1-methylnicotinamide were identified as a potential biomarkers for assessing therapeutic effects on CAP with ARDS, and with AUCs of 0.866 and 0.795, respectively. Moreover, the ROC curve analysis revealed that combined characteristic serum and urine metabolites exhibited a better classification system for assessing therapeutic effects on CAP with ARDS, with a AUC value of 0.952. In addition, differential metabolites strongly correlated with clinical parameters in patients with CAP with ARDS. CONCLUSIONS: Serum- and urine-based metabolomics analyses identified characteristic metabolic alterations in CAP with ARDS and might provide promising circulatory markers for evaluating therapeutic effects on CAP with ARDS.


Asunto(s)
Infecciones Comunitarias Adquiridas , Neumonía , Síndrome de Dificultad Respiratoria , Ácido 3-Hidroxibutírico , Acetoacetatos , Acetona , Biomarcadores , Infecciones Comunitarias Adquiridas/diagnóstico , Humanos , Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos , Neumonía/diagnóstico por imagen , Curva ROC , Síndrome de Dificultad Respiratoria/diagnóstico por imagen
14.
J Proteome Res ; 20(8): 3900-3912, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34237942

RESUMEN

Sex differences in obesity have been well established, but the metabolic mechanism underlying these differences remains unclear. In the present study, we determined the expression levels of endogenous fibroblast growth factor 21 (FGF21) and its related receptors in male and female mice that were fed a high-fat diet (HFD) for 12 weeks. We also analyzed the metabolic changes in serum and livers using a nuclear magnetic resonance-based metabolomics approach. Reverse transcription polymerase chain reaction and western blotting results revealed that the levels of FGFR1, FGFR2, and co-factor ß-klotho were upregulated in female mice to alleviate FGF21 resistance induced by HFD. The metabolomics results demonstrated that the serum and liver metabolic patterns of HFD-fed male mice were significantly separated from those of the female HFD-fed group and the normal diet group. Furthermore, low-density lipoprotein/very low density lipoprotein and betaine levels were associated with the resistance of exogenous HFD in female mice. These findings imply that sex-based differences in metabolism and susceptibility to obesity might be mediated by the FGF21 signaling pathway.


Asunto(s)
Dieta Alta en Grasa , Factores de Crecimiento de Fibroblastos , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Factores de Crecimiento de Fibroblastos/genética , Hígado , Masculino , Metabolómica , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Transducción de Señal
15.
J Proteome Res ; 20(11): 5024-5035, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34699241

RESUMEN

Diabetic enteropathy (DE) is a diabetic complication and affects the quality of life for which there are limited therapies. In this study, db/db mice were administered with a basic fibroblast growth factor (bFGF) to explore its therapeutic effect on the intestine. 1H NMR-based metabolomics was applied to investigate the metabolic pattern. H&E and PAS staining were used to observe the morphological phenotypes related to intestinal barrier function. Tight junction proteins such as Zo-1 and Occluding were successively tested by immunofluorescence and real-time PCR. We found that bFGF treatment significantly restored intestinal barrier function. In addition, the administration of bFGF decreased the levels of inflammatory cytokines in the cecum. Metabolomic results show that bFGF remodeled metabolic phenotypes of the colon, cecum, and small intestine in db/db mice, including energy metabolism, short chain fatty acid metabolism, amino acid metabolism, and choline metabolism. Hence, this study indicates that the bFGF has a protective effect in diabetic bowel disease by restoring intestinal barrier function, reducing inflammatory infiltration, and remodeling metabolic function.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Calidad de Vida , Animales , Factor 2 de Crecimiento de Fibroblastos/genética , Intestinos , Metabolómica , Ratones , Espectroscopía de Protones por Resonancia Magnética
16.
Respir Res ; 22(1): 44, 2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33549106

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is the most common interstitial lung diseases with a poor prognosis. Long non-coding RNAs (lncRNAs) have been reported to be involved in IPF in several studies. However, the role of lncRNA SNHG16 in IPF is largely unknown. METHODS: Firstly, experimental pulmonary fibrosis model was established by using bleomycin (BML). Histology and Western blotting assays were used to determine the different stages of fibrosis and expression of several fibrosis biomarkers. The expression of SNHG16 was detected by quantitative real-time polymerase chain reaction (qRT-PCR). EdU staining and wound-healing assay were utilized to analyze proliferation and migration of lung fibroblast cells. Molecular mechanism of SNHG16 was explored by bioinformatics, dual-luciferase reporter assay, RNA immunoprecipitation assay (RIP), and qRT-PCR. RESULTS: The expression of SNHG16 was significantly up-regulated in bleomycin-(BLM) induced lung fibrosis and transforming growth factor-ß (TGF-ß)-induced fibroblast. Knockdown of SNHG16 could attenuate fibrogenesis. Mechanistically, SNHG16 was able to bind and regulate the expression of miR-455-3p. Moreover, SNHG16 also regulated the expression of Notch2 by targeting miR-455-3p. Finally, SNHG16 could promote fibrogenesis by regulating the expression of Notch2. CONCLUSION: Taken together, our study demonstrated that SNHG16 promoted pulmonary fibrosis by targeting miR-455-3p to regulate the Notch2 pathway. These findings might provide a novel insight into pathologic process of lung fibrosis and may provide prevention strategies in the future.


Asunto(s)
Fibrosis Pulmonar Idiopática/metabolismo , MicroARNs/biosíntesis , ARN Largo no Codificante/biosíntesis , Receptor Notch2/biosíntesis , Transducción de Señal/fisiología , Animales , Bleomicina/toxicidad , Células Cultivadas , Técnicas de Silenciamiento del Gen/métodos , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/genética , Receptor Notch2/genética , Transducción de Señal/efectos de los fármacos
17.
FASEB J ; 34(10): 13333-13344, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32816365

RESUMEN

The deregulation of S100A2 has been implicated in the pathogenesis of several types of cancers. However, the molecular mechanisms underlying the protumorigenic capacities of S100A2 have not been fully elucidated. Here, we demonstrated the molecular mechanisms underlying the roles of S100A2 in glycolysis reprogramming and proliferation of colorectal cancer (CRC) cells. The results indicated that S100A2 overexpression raises glucose metabolism and proliferation. Mechanistically, S100A2 activated the PI3K/AKT signaling pathway, upregulated GLUT1 expression, induced glycolytic reprogramming, and consequently increased proliferation. Clinical data showed significantly increased S100A2 levels in CRC tissues and the Oncomine database. In addition, analysis revealed a positive correlation between S100A2 and GLUT1 mRNA expression in CRC tissues. Together, these results demonstrate that the S100A2/GLUT1 axis can promote the progression of CRC by modulating glycolytic reprogramming. Our results further suggest that targeting S100A2 could present a promising therapeutic avenue for the prevention of colorectal cancer progression.


Asunto(s)
Proliferación Celular , Factores Quimiotácticos/metabolismo , Neoplasias Colorrectales/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Glucólisis , Proteínas S100/metabolismo , Animales , Transportador de Glucosa de Tipo 1/genética , Células HCT116 , Células HT29 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
18.
J Clin Lab Anal ; 35(2): e23641, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33141993

RESUMEN

OBJECTIVE: Development of biofluid-based biomarkers is attractive for the diagnosis of chronic obstructive pulmonary disease (COPD) but still lacking. Thus, here we aimed to identify serum metabolic biomarkers for the diagnosis of COPD. METHODS: In this study, we investigated serum metabolic features between COPD patients (n = 54) and normal individuals (n = 74) using a 1 H NMR-based metabolomics approach and developed an integrated method of least-squares support vector machine (LS-SVM) and serum metabolic biomarkers to assist COPD diagnosis. RESULTS: We observed a hypometabolic state in serum of COPD patients, as indicated by decreases in N-acetyl-glycoprotein (NAG), lipoprotein (LOP, mainly LDL/VLDL), polyunsaturated fatty acid (pUFA), glucose, alanine, leucine, histidine, valine, and lactate. Using an integrated method of multivariable and univariate analyses, NAG and LOP were identified as two important metabolites for distinguishing between COPD patients and controls. Subsequently, we developed a LS-SVM classifier using these two markers and found that LS-SVM classifiers with linear and polynomial kernels performed better than the classifier with RBF kernel. Linear and polynomial LS-SVM classifiers can achieve the total accuracy rates of 80.77% and 84.62% and the AUC values of 0.87 and 0.90 for COPD diagnosis, respectively. CONCLUSIONS: This study suggests that artificial intelligence integrated with serum metabolic biomarkers has a great potential for auxiliary diagnosis of COPD.


Asunto(s)
Biomarcadores/sangre , Diagnóstico por Computador/métodos , Enfermedad Pulmonar Obstructiva Crónica/sangre , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Máquina de Vectores de Soporte , Anciano , Inteligencia Artificial , Estudios de Casos y Controles , Femenino , Humanos , Análisis de los Mínimos Cuadrados , Espectroscopía de Resonancia Magnética , Masculino , Metabolómica/métodos , Persona de Mediana Edad
19.
J Proteome Res ; 19(9): 3741-3749, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32702989

RESUMEN

Tumor metabolic characteristics have been associated with the progression of prostate cancer (PCa), but little information is available regarding the metabolic alterations from hormone-sensitive (HSPC) to castration-resistant PCa (CRPC). In this study, therefore, we investigated the metabolic profiles in prostate tissues from patients with benign prostatic hyperplasia (BPH), HSPC, and CRPC using a 1H NMR-based metabolomics approach. The results show that clear separations in metabolic patterns were obtained in prostate tissues among BPH, HSPC, and CRPC; however, CRPC may induce a metabolic shift toward BPH, mainly involving amino acid metabolism, choline metabolism, and the Warburg effect. Based on these metabolic changes, we identified potential biomarker panels for the discrimination between BPH vs HSPC, BPH vs CRPC, and HSPC vs CRPC with the AUC values of 0.995, 0.972, and 0.937, respectively. Collectively, tissue-based metabolomics analysis not only identifies the altered metabolic pathways during PCa progression but also has the potential to help the classification and diagnosis of PCa in clinical practice.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Biopsia , Hormonas , Humanos , Masculino , Metabolómica , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico , Espectroscopía de Protones por Resonancia Magnética
20.
J Proteome Res ; 19(8): 3011-3021, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32450697

RESUMEN

Diabetes mellitus (DM) can cause systemic metabolic disorders, but the impact of gender on DM-related metabolic changes is rarely reported. Herein, we analyzed metabolic alterations in the heart, liver, and kidney of male and female mice from normal to diabetes via a 1H NMR-based metabolomics method and aimed to investigate sex-specific metabolic mechanisms underlying the onset and development of diabetes and its complications. Our results demonstrate that male mice had more significant metabolic disorders from normal to diabetes than female mice. Moreover, the kidney was found as the major organ of metabolic disorders during the development of diabetes, followed by the liver and heart. These altered metabolites were mainly implicated in energy metabolism as well as amino acid, choline, and nucleotide metabolism. Therefore, this study suggests that the kidney is the primary organ affected by diabetes in a sex-specific manner, which provides a metabolic view on the pathogenesis of diabetic kidney diseases between genders.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Animales , Femenino , Hígado , Espectroscopía de Resonancia Magnética , Masculino , Metabolómica , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA