Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.470
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(20): e113743, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37661833

RESUMEN

Mitochondria play essential roles in cancer cell adaptation to hypoxia, but the underlying mechanisms remain elusive. Through mitochondrial proteomic profiling, we here find that the prolyl hydroxylase EglN1 (PHD2) accumulates on mitochondria under hypoxia. EglN1 substrate-binding region in the ß2ß3 loop is responsible for its mitochondrial translocation and contributes to breast tumor growth. Furthermore, we identify AMP-activated protein kinase alpha (AMPKα) as an EglN1 substrate on mitochondria. The EglN1-AMPKα interaction is essential for their mutual mitochondrial translocation. After EglN1 prolyl-hydroxylates AMPKα under normoxia, they rapidly dissociate following prolyl-hydroxylation, leading to their immediate release from mitochondria. In contrast, hypoxia results in constant EglN1-AMPKα interaction and their accumulation on mitochondria, leading to the formation of a Ca2+ /calmodulin-dependent protein kinase 2 (CaMKK2)-EglN1-AMPKα complex to activate AMPKα phosphorylation, ensuring metabolic homeostasis and breast tumor growth. Our findings identify EglN1 as an oxygen-sensitive metabolic checkpoint signaling hypoxic stress to mitochondria through its ß2ß3 loop region, suggesting a potential therapeutic target for breast cancer.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Neoplasias de la Mama , Femenino , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Hipoxia , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Mitocondrias/metabolismo , Proteómica
2.
PLoS Biol ; 22(6): e3002680, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38865309

RESUMEN

CRISPR-Cas12a, often regarded as a precise genome editor, still requires improvements in specificity. In this study, we used a GFP-activation assay to screen 14 new Cas12a nucleases for mammalian genome editing, successfully identifying 9 active ones. Notably, these Cas12a nucleases prefer pyrimidine-rich PAMs. Among these nucleases, we extensively characterized Mb4Cas12a obtained from Moraxella bovis CCUG 2133, which recognizes a YYN PAM (Y = C or T). Our biochemical analysis demonstrates that Mb4Cas12a can cleave double-strand DNA across a wide temperature range. To improve specificity, we constructed a SWISS-MODEL of Mb4Cas12a based on the FnCas12a crystal structure and identified 8 amino acids potentially forming hydrogen bonds at the target DNA-crRNA interface. By replacing these amino acids with alanine to disrupt the hydrogen bond, we tested the influence of each mutation on Mb4Cas12a specificity. Interestingly, the F370A mutation improved specificity with minimal influence on activity. Further study showed that Mb4Cas12a-F370A is capable of discriminating single-nucleotide polymorphisms. These new Cas12a orthologs and high-fidelity variants hold substantial promise for therapeutic applications.


Asunto(s)
Alelos , Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Edición Génica , Edición Génica/métodos , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/genética , Humanos , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/química , Animales , Ingeniería de Proteínas/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Polimorfismo de Nucleótido Simple , Mutación , ADN/metabolismo , ADN/genética , Células HEK293
3.
Proc Natl Acad Sci U S A ; 121(14): e2217019121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38547062

RESUMEN

Mitochondria constantly fuse and divide for mitochondrial inheritance and functions. Here, we identified a distinct type of naturally occurring fission, tail-autotomy fission, wherein a tail-like thin tubule protrudes from the mitochondrial body and disconnects, resembling autotomy. Next, utilizing an optogenetic mitochondria-specific mechanostimulator, we revealed that mechanical tensile force drives tail-autotomy fission. This force-induced fission involves DRP1/MFF and endoplasmic reticulum tubule wrapping. It redistributes mitochondrial DNA, producing mitochondrial fragments with or without mitochondrial DNA for different fates. Moreover, tensile force can decouple outer and inner mitochondrial membranes, pulling out matrix-excluded tubule segments. Subsequent tail-autotomy fission separates the matrix-excluded tubule segments into matrix-excluded mitochondrial-derived vesicles (MDVs) which recruit Parkin and LC3B, indicating the unique role of tail-autotomy fission in segregating only outer membrane components for mitophagy. Sustained force promotes fission and MDV biogenesis more effectively than transient one. Our results uncover a mechanistically and functionally distinct type of fission and unveil the role of tensile forces in modulating fission and MDV biogenesis for quality control, underscoring the heterogeneity of fission and mechanoregulation of mitochondrial dynamics.


Asunto(s)
Proteínas de la Membrana , Dinámicas Mitocondriales , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Mitocondrias/genética , ADN Mitocondrial , Control de Calidad , Dinaminas/genética
4.
Plant J ; 118(3): 682-695, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38251816

RESUMEN

Ginger is cultivated in tropical and subtropical regions and is one of the most crucial spices worldwide owing to its special taste and scent. Here, we present a high-quality genome assembly for 'Small Laiwu Ginger', a famous cultivated ginger in northern China. The ginger genome was phased into two haplotypes, haplotype A (1.55Gb), and haplotype B (1.44Gb). Analysis of Ty1/Copia and Ty3/Gypsy LTR retrotransposon families revealed that both have undergone multiple retrotransposon bursts about 0-1 million years ago. In addition to a recent whole-genome duplication event, there has been a lineage-specific expansion of genes involved in stilbenoid, diarylheptanoid, and gingerol biosynthesis, thereby enhancing 6-gingerol biosynthesis. Furthermore, we focused on the biosynthesis of 6-gingerol, the most important gingerol, and screened key transcription factors ZoMYB106 and ZobHLH148 that regulate 6-gingerol synthesis by transcriptomic and metabolomic analysis in the ginger rhizome at four growth stages. The results of yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase reporter gene assays showed that both ZoMYB106 and ZobHLH148 bind to the promoters of the key rate-limiting enzyme genes ZoCCOMT1 and ZoCCOMT2 in the 6-gingerol synthesis pathway and promote their transcriptional activities. The reference genome, transcriptome, and metabolome data pave the way for further research on the molecular mechanism underlying the biosynthesis of 6-gingerol. Furthermore, it provides precious new resources for the study on the biology and molecular breeding of ginger.


Asunto(s)
Catecoles , Alcoholes Grasos , Genoma de Planta , Zingiber officinale , Zingiber officinale/genética , Zingiber officinale/metabolismo , Alcoholes Grasos/metabolismo , Catecoles/metabolismo , Genoma de Planta/genética , Evolución Molecular , Retroelementos/genética , Haplotipos , Rizoma/genética , Rizoma/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Regulación de la Expresión Génica de las Plantas
5.
Am J Hum Genet ; 109(11): 1960-1973, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36332611

RESUMEN

Sharing genomic variant interpretations across laboratories promotes consistency in variant assertions. A landscape analysis of Australian clinical genetic-testing laboratories in 2017 identified that, despite the national-accreditation-body recommendations encouraging laboratories to submit genotypic data to clinical databases, fewer than 300 variants had been shared to the ClinVar public database. Consultations with Australian laboratories identified resource constraints limiting routine application of manual processes, consent issues, and differences in interpretation systems as barriers to sharing. This information was used to define key needs and solutions required to enable national sharing of variant interpretations. The Shariant platform, using both the GRCh37 and GRCh38 genome builds, was developed to enable ongoing sharing of variant interpretations and associated evidence between Australian clinical genetic-testing laboratories. Where possible, two-way automated sharing was implemented so that disruption to laboratory workflows would be minimized. Terms of use were developed through consultation and currently restrict access to Australian clinical genetic-testing laboratories. Shariant was designed to store and compare structured evidence, to promote and record resolution of inter-laboratory classification discrepancies, and to streamline the submission of variant assertions to ClinVar. As of December 2021, more than 14,000 largely prospectively curated variant records from 11 participating laboratories have been shared. Discrepant classifications have been identified for 11% (28/260) of variants submitted by more than one laboratory. We have demonstrated that co-design with clinical laboratories is vital to developing and implementing a national variant-interpretation sharing effort. This approach has improved inter-laboratory concordance and enabled opportunities to standardize interpretation practices.


Asunto(s)
Bases de Datos Genéticas , Laboratorios , Humanos , Variación Genética , Australia , Pruebas Genéticas
6.
Gastroenterology ; 167(2): 281-297, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38492894

RESUMEN

BACKGROUND & AIMS: Because pancreatic cancer responds poorly to chemotherapy and immunotherapy, it is necessary to identify novel targets and compounds to overcome resistance to treatment. METHODS: This study analyzed genomic single nucleotide polymorphism sequencing, single-cell RNA sequencing, and spatial transcriptomics. Ehf-knockout mice, KPC (LSL-KrasG12D/+, LSL-Trp53R172H/+ and Pdx1-Cre) mice, CD45.1+ BALB/C nude mice, and CD34+ humanized mice were also used as subjects. Multiplexed immunohistochemistry and flow cytometry were performed to investigate the proportion of tumor-infiltrated C-X-C motif chemokine receptor 2 (CXCR2)+ neutrophils. In addition, multiplexed cytokines assays and chromatin immunoprecipitation assays were used to examine the mechanism. RESULTS: The TP53 mutation-mediated loss of tumoral EHF increased the recruitment of CXCR2+ neutrophils, modulated their spatial distribution, and further induced chemo- and immunotherapy resistance in clinical cohorts and preclinical syngeneic mice models. Mechanistically, EHF deficiency induced C-X-C motif chemokine ligand 1 (CXCL1) transcription to enhance in vitro and in vivo CXCR2+ neutrophils migration. Moreover, CXCL1 or CXCR2 blockade completely abolished the effect, indicating that EHF regulated CXCR2+ neutrophils migration in a CXCL1-CXCR2-dependent manner. The depletion of CXCR2+ neutrophils also blocked the in vivo effects of EHF deficiency on chemotherapy and immunotherapy resistance. The single-cell RNA-sequencing results of PDAC treated with Nifurtimox highlighted the therapeutic significance of Nifurtimox by elevating the expression of tumoral EHF and decreasing the weightage of CXCL1-CXCR2 pathway within the microenvironment. Importantly, by simultaneously inhibiting the JAK1/STAT1 pathway, it could significantly suppress the recruitment and function of CXCR2+ neutrophils, further sensitizing PDAC to chemotherapy and immunotherapies. CONCLUSIONS: The study demonstrated the role of EHF in the recruitment of CXCR2+ neutrophils and the promising role of Nifurtimox in sensitizing pancreatic cancer to chemotherapy and immunotherapy.


Asunto(s)
Quimiocina CXCL1 , Resistencia a Antineoplásicos , Infiltración Neutrófila , Neutrófilos , Neoplasias Pancreáticas , Receptores de Interleucina-8B , Animales , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/antagonistas & inhibidores , Humanos , Infiltración Neutrófila/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/efectos de los fármacos , Ratones , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética , Línea Celular Tumoral , Ratones Noqueados , Microambiente Tumoral , Inmunoterapia/métodos , Ratones Desnudos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Ratones Endogámicos BALB C , Antineoplásicos/farmacología , Transducción de Señal , Mutación , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología
7.
J Virol ; 98(3): e0000724, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38305153

RESUMEN

Pseudorabies virus (PRV) is the causative agent of Aujeszky's disease, which is responsible for enormous economic losses to the global pig industry. Although vaccination has been used to prevent PRV infection, the effectiveness of vaccines has been greatly diminished with the emergence of PRV variants. Therefore, there is an urgent need to develop anti-PRV drugs. Polyethylenimine (PEI) is a cationic polymer and has a wide range of antibacterial and antiviral activities. This study found that a low dose of 1 µg/mL of the 25-kDa linear PEI had significantly specific anti-PRV activity, which became more intense with increasing concentrations. Mechanistic studies revealed that the viral adsorption stage was the major target of PEI without affecting viral entry, replication stages, and direct inactivation effects. Subsequently, we found that cationic polymers PEI and Polybrene interfered with the interaction between viral proteins and cell surface receptors through electrostatic interaction to exert the antiviral function. In conclusion, cationic polymers such as PEI can be a category of options for defense against PRV. Understanding the anti-PRV mechanism also deepens host-virus interactions and reveals new drug targets for anti-PRV.IMPORTANCEPolyethylenimine (PEI) is a cationic polymer that plays an essential role in the host immune response against microbial infections. However, the specific mechanisms of PEI in interfering with pseudorabies virus (PRV) infection remain unclear. Here, we found that 25-kDa linear PEI exerted mechanisms of antiviral activity and the target of its antiviral activity was mainly in the viral adsorption stage. Correspondingly, the study demonstrated that PEI interfered with the virus adsorption stage by electrostatic adsorption. In addition, we found that cationic polymers are a promising novel agent for controlling PRV, and its antiviral mechanism may provide a strategy for the development of antiviral drugs.


Asunto(s)
Antivirales , Herpesvirus Suido 1 , Polietileneimina , Electricidad Estática , Animales , Adsorción/efectos de los fármacos , Antivirales/química , Antivirales/farmacología , Herpesvirus Suido 1/efectos de los fármacos , Herpesvirus Suido 1/metabolismo , Polietileneimina/química , Polietileneimina/farmacología , Seudorrabia/tratamiento farmacológico , Seudorrabia/virología , Porcinos/virología , Enfermedades de los Porcinos/virología
8.
Nat Chem Biol ; 19(4): 468-477, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36635564

RESUMEN

Membrane dynamics are important to the integrity and function of mitochondria. Defective mitochondrial fusion underlies the pathogenesis of multiple diseases. The ability to target fusion highlights the potential to fight life-threatening conditions. Here we report a small molecule agonist, S89, that specifically promotes mitochondrial fusion by targeting endogenous MFN1. S89 interacts directly with a loop region in the helix bundle 2 domain of MFN1 to stimulate GTP hydrolysis and vesicle fusion. GTP loading or competition by S89 dislodges the loop from the GTPase domain and unlocks the molecule. S89 restores mitochondrial and cellular defects caused by mitochondrial DNA mutations, oxidative stress inducer paraquat, ferroptosis inducer RSL3 or CMT2A-causing mutations by boosting endogenous MFN1. Strikingly, S89 effectively eliminates ischemia/reperfusion (I/R)-induced mitochondrial damage and protects mouse heart from I/R injury. These results reveal the priming mechanism for MFNs and provide a therapeutic strategy for mitochondrial diseases when additional mitochondrial fusion is beneficial.


Asunto(s)
Dinámicas Mitocondriales , Proteínas de Transporte de Membrana Mitocondrial , Ratones , Animales , Proteínas de Transporte de Membrana Mitocondrial/análisis , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Mitocondrias , Hidrólisis , Guanosina Trifosfato/análisis , Guanosina Trifosfato/farmacología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/análisis , Proteínas Mitocondriales/farmacología
9.
EMBO Rep ; 24(11): e56614, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37789674

RESUMEN

ATPase family AAA domain-containing protein 1 (ATAD1) maintains mitochondrial homeostasis by removing mislocalized tail-anchored (TA) proteins from the mitochondrial outer membrane (MOM). Hepatitis C virus (HCV) infection induces mitochondrial fragmentation, and viral NS5B protein is a TA protein. Here, we investigate whether ATAD1 plays a role in regulating HCV infection. We find that HCV infection has no effect on ATAD1 expression, but knockout of ATAD1 significantly enhances HCV infection; this enhancement is suppressed by ATAD1 complementation. NS5B partially localizes to mitochondria, dependent on its transmembrane domain (TMD), and induces mitochondrial fragmentation, which is further enhanced by ATAD1 knockout. ATAD1 interacts with NS5B, dependent on its three internal domains (TMD, pore-loop 1, and pore-loop 2), and induces the proteasomal degradation of NS5B. In addition, we provide evidence that ATAD1 augments the antiviral function of MAVS upon HCV infection. Taken together, we show that the mitochondrial quality control exerted by ATAD1 can be extended to a novel antiviral function through the extraction of the viral TA-protein NS5B from the mitochondrial outer membrane.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Hepacivirus/metabolismo , Proteínas Virales/metabolismo , Hepatitis C/metabolismo , Mitocondrias/metabolismo , Antivirales , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
10.
Cell Mol Life Sci ; 81(1): 19, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38196005

RESUMEN

Cardiovascular disorders are commonly prevalent in cancer patients, yet the mechanistic link between them remains poorly understood. Because neutrophil extracellular traps (NETs) have implications not just in cardiovascular diseases (CVD), but also in breast cancer (BC), it was hypothesized to contribute to CVD in the context of oncogenesis. We established a mouse model using nude mice to simulate liver metastasis of triple-negative BC (TNBC) through the injection of MDA-MB-231 cells. Multiple imaging and analysis techniques were employed to assess the cardiac function and structure, including echocardiography, HE staining, Masson staining, and transmission electron microscopy (TEM). MDA-MB-231 cells underwent treatment with a CaSR inhibitor, CaSR agonist, and NF-κB channel blocker. The phosphorylation of NF-κB channel protein p65 and the expression and secretion of IL-8 were assessed using qRT-PCR, Western Blot, and ELISA, respectively. In addition, MDA-MB-231 cells were co-cultured with polymorphonuclear neutrophils (PMN) under varying conditions. The co-localization of PMN extracellular myeloperoxidase (MPO) and DNA were observed by cellular immunofluorescence staining to identify the formation of NETs. Then, the cardiomyocytes were co-cultured with the above medium that contains NETs or not, respectively; the effects of NETs on cardiomyocytes apoptosis were perceived by flow cytometry. The ultrastructural changes of myocardial cells were perceived by TEM, and ELISA detected the levels of myocardial enzyme (LDH, MDA and SOD). Overall, according to our research, CaSR has been found to have a regulatory role in IL-8 secretion in MDA-MB-231 cells, as well as in the formation of NETs by PMN cells. These findings suggest CaSR-mediated stimulation in PMN can lead to increased NETs formation and subsequently to cytotoxicity in cardiomyocytes, which potentially via activation of the NF-κB signaling cascade of BC cell.


Asunto(s)
Enfermedades Cardiovasculares , Trampas Extracelulares , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , FN-kappa B , Receptores Sensibles al Calcio , Miocitos Cardíacos , Interleucina-8 , Ratones Desnudos
11.
Proc Natl Acad Sci U S A ; 119(43): e2200215119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252004

RESUMEN

Cancer cachexia is a lethal metabolic syndrome featuring muscle wasting with preferential loss of fast-twitching muscle mass through an undefined mechanism. Here, we show that cancer induces muscle wasting by selectively degrading myosin heavy chain (MHC) subtypes IIb and IIx through E3 ligase UBR2-mediated ubiquitylation. Induction of MHC loss and atrophy in C2C12 myotubes and mouse tibialis anterior (TA) by murine cancer cells required UBR2 up-regulation by cancer. Genetic gain or loss of UBR2 function inversely altered MHC level and muscle mass in TA of tumor-free mice. UBR2 selectively interacted with and ubiquitylated MHC-IIb and MHC-IIx through its substrate recognition and catalytic domain, respectively, in C2C12 myotubes. Elevation of UBR2 in muscle of tumor-bearing or free mice caused loss of MHC-IIb and MHC-IIx but not MHC-I and MHC-IIa or other myofibrillar proteins, including α-actin, troponin, tropomyosin, and tropomodulin. Muscle-specific knockout of UBR2 spared KPC tumor-bearing mice from losing MHC-IIb and MHC-IIx, fast-twitching muscle mass, cross-sectional area, and contractile force. The rectus abdominis (RA) muscle of patients with cachexia-prone cancers displayed a selective reduction of MHC-IIx in correlation with higher UBR2 levels. These data suggest that UBR2 is a regulator of MHC-IIb/IIx essential for cancer-induced muscle wasting, and that therapeutic interventions can be designed by blocking UBR2 up-regulation by cancer.


Asunto(s)
Caquexia , Cadenas Pesadas de Miosina , Neoplasias , Ubiquitina-Proteína Ligasas , Animales , Ratones , Actinas/metabolismo , Caquexia/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Neoplasias/complicaciones , Neoplasias/genética , Neoplasias/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Tropomodulina/metabolismo , Tropomiosina/metabolismo , Troponina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(32): e2202371119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35917353

RESUMEN

Epstein-Barr virus (EBV) infects more than 90% of the world's adult population and accounts for a significant cancer burden of epithelial and B cell origins. Glycoprotein B (gB) is the primary fusogen essential for EBV entry into host cells. Here, we isolated two EBV gB-specific neutralizing antibodies, 3A3 and 3A5; both effectively neutralized the dual-tropic EBV infection of B and epithelial cells. In humanized mice, both antibodies showed effective protection from EBV-induced lymphoproliferative disorders. Cryoelectron microscopy analyses identified that 3A3 and 3A5 bind to nonoverlapping sites on domains D-II and D-IV, respectively. Structure-based mutagenesis revealed that 3A3 and 3A5 inhibit membrane fusion through different mechanisms involving the interference with gB-cell interaction and gB activation. Importantly, the 3A3 and 3A5 epitopes are major targets of protective gB-specific neutralizing antibodies elicited by natural EBV infection in humans, providing potential targets for antiviral therapies and vaccines.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Proteínas Virales , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/química , Anticuerpos Antivirales/aislamiento & purificación , Anticuerpos Antivirales/uso terapéutico , Microscopía por Crioelectrón , Infecciones por Virus de Epstein-Barr/prevención & control , Infecciones por Virus de Epstein-Barr/terapia , Herpesvirus Humano 4/inmunología , Humanos , Fusión de Membrana , Ratones , Proteínas Virales/inmunología
13.
Anal Chem ; 96(4): 1498-1505, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38216336

RESUMEN

Hydrophilic interaction liquid chromatography (HILIC) is widely used for glycopeptide enrichment in shot-gun glycoproteomics to enhance the glycopeptide signal and minimize the ionization competition of peptides. In this work, we have developed a novel hydrophilic material (glycoHILIC) based on glycopeptides and peptides to provide hydrophilic properties. GlycoHILIC was synthesized by oxidizing cotton and then reacting the resulting aldehyde with the N-terminus of the glycopeptide or peptide by reductive amination. Due to the large amount of hydrophilic carbohydrates and hydrophilic amino acids contained in glycopeptides, glycoHILIC showed significantly better enrichment of glycopeptides than cotton itself. Our results demonstrate that glycoHILIC has high selectivity, a low detection limit, and good stability. Over 257 unique N-linked glycosylation sites in 1477 intact N-glycopeptides from 146 glycoproteins were identified from 1 µL of human serum using glycoHILIC. Serum analysis of pancreatic cancer patients found that 38 N-glycopeptides among 21 glycoproteins changed significantly, of which 7 N-glycopeptides increased and 31 N-glycopeptides decreased. These results demonstrate that glycoHILIC can be used for glycopeptide enrichment and analysis.


Asunto(s)
Glicopéptidos , Glicoproteínas , Humanos , Glicopéptidos/análisis , Glicosilación , Cromatografía Liquida/métodos , Interacciones Hidrofóbicas e Hidrofílicas
14.
Development ; 148(5)2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33472846

RESUMEN

In mammals, sperm-borne regulators can be transferred to oocytes during fertilization and have different effects on the formation of pronuclei, the first cleavage of zygotes, the development of preimplantation embryos and even the metabolism of individuals after birth. The regulatory role of sperm microRNAs (miRNAs) in the development of bovine preimplantation embryos has not been reported in detail. By constructing and screening miRNA expression libraries, we found that miR-202 was highly enriched in bovine sperm. As a target gene of miR-202, co-injection of SEPT7 siRNA can partially reverse the accelerated first cleavage of bovine embryos caused by miR-202 inhibitor. In addition, both a miR-202 mimic and SEPT7 siRNA delayed the first cleavage of somatic cell nuclear transfer (SCNT) embryos, suggesting that miR-202-SEPT7 mediates the delay of first cleavage of bovine embryos. By further exploring the relationship between miR-202/SEPT7, HDAC6 and acetylated α-tubulin during embryonic development, we investigated how sperm-borne miR-202 regulates the first cleavage process of bovine embryos by SEPT7 and demonstrate the potential of sperm-borne miRNAs to improve the efficiency of SCNT.


Asunto(s)
Citoesqueleto/metabolismo , Embrión de Mamíferos/metabolismo , MicroARNs/metabolismo , Septinas/metabolismo , Regiones no Traducidas 3' , Acetilación , Animales , Antagomirs/metabolismo , Bovinos , Desarrollo Embrionario , Femenino , Fertilización In Vitro , Histona Desacetilasa 6/metabolismo , Masculino , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Embarazo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Septinas/antagonistas & inhibidores , Septinas/genética , Espermatozoides/metabolismo , Tubulina (Proteína)/metabolismo , Cigoto/metabolismo
15.
BMC Med ; 22(1): 206, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769523

RESUMEN

BACKGROUND: Numerous studies have been conducted to investigate the relationship between ABO and Rhesus (Rh) blood groups and various health outcomes. However, a comprehensive evaluation of the robustness of these associations is still lacking. METHODS: We searched PubMed, Web of Science, Embase, Scopus, Cochrane, and several regional databases from their inception until Feb 16, 2024, with the aim of identifying systematic reviews with meta-analyses of observational studies exploring associations between ABO and Rh blood groups and diverse health outcomes. For each association, we calculated the summary effect sizes, corresponding 95% confidence intervals, 95% prediction interval, heterogeneity, small-study effect, and evaluation of excess significance bias. The evidence was evaluated on a grading scale that ranged from convincing (Class I) to weak (Class IV). We assessed the certainty of evidence according to the Grading of Recommendations Assessment, Development, and Evaluation criteria (GRADE). We also evaluated the methodological quality of included studies using the A Measurement Tool to Assess Systematic Reviews (AMSTAR). AMSTAR contains 11 items, which were scored as high (8-11), moderate (4-7), and low (0-3) quality. We have gotten the registration for protocol on the PROSPERO database (CRD42023409547). RESULTS: The current umbrella review included 51 systematic reviews with meta-analysis articles with 270 associations. We re-calculated each association and found only one convincing evidence (Class I) for an association between blood group B and type 2 diabetes mellitus risk compared with the non-B blood group. It had a summary odds ratio of 1.28 (95% confidence interval: 1.17, 1.40), was supported by 6870 cases with small heterogeneity (I2 = 13%) and 95% prediction intervals excluding the null value, and without hints of small-study effects (P for Egger's test > 0.10, but the largest study effect was not more conservative than the summary effect size) or excess of significance (P < 0.10, but the value of observed less than expected). And the article was demonstrated with high methodological quality using AMSTAR (score = 9). According to AMSTAR, 18, 32, and 11 studies were categorized as high, moderate, and low quality, respectively. Nine statistically significant associations reached moderate quality based on GRADE. CONCLUSIONS: Our findings suggest a potential relationship between ABO and Rh blood groups and adverse health outcomes. Particularly the association between blood group B and type 2 diabetes mellitus risk.


Asunto(s)
Sistema del Grupo Sanguíneo ABO , Metaanálisis como Asunto , Estudios Observacionales como Asunto , Sistema del Grupo Sanguíneo Rh-Hr , Revisiones Sistemáticas como Asunto , Humanos , Revisiones Sistemáticas como Asunto/métodos , Estudios Observacionales como Asunto/métodos
16.
Small ; : e2309857, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38258604

RESUMEN

Currently, artificial neural networks (ANNs) based on memristors are limited to recognizing static images of objects when simulating human visual system, preventing them from performing high-dimensional information perception, and achieving more complex biomimetic functions is subject to certain limitations. In this work, indium gallium zinc oxide (IGZO)/tungsten oxide (WO3-x )-heterostructured artificial optoelectronic synaptic devices mimicking image segmentation and motion capture exhibiting high-performance optoelectronic synaptic responses are proposed and demonstrated. Upon electrical and optical stimulations, the device shows a variety of fundamental and advanced electrical and optical synaptic plasticity. Most importantly, outstanding and repeatable linear synaptic weight changes are attained by the developed memristor. By taking advantage of the notable linear synaptic weight changes, ANNs have been constructed and successfully utilized to demonstrate two applications in the field of computer vision, including image segmentation and object tracking. The accuracy attained by the memristor-based ANNs is similar to that of the computer algorithms, while its power has been significantly reduced by 105 orders of magnitude. With successful emulations of the human brain reactions when observing objects, the demonstrated memristor and related ANNs can be effectively utilized in constructing artificial optoelectronic synaptic devices and show promising potential in emulating human visual perception.

17.
Small ; 20(21): e2308430, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38126626

RESUMEN

Graphene nanoribbons (GNRs) are promising in nanoelectronics for their quasi-1D structures with tunable bandgaps. The methods for controllable fabrication of high-quality GNRs are still limited. Here a way to generate sub-5-nm GNRs by annealing single-walled carbon nanotubes (SWCNTs) on Cu(111) is demonstrated. The structural evolution process is characterized by low-temperature scanning tunneling microscopy. Substrate-dependent measurements on Au(111) and Ru(0001) reveal that the intermediate strong SWCNT-surface interaction plays a pivotal role in the formation of GNRs.

18.
Yeast ; 41(1-2): 19-34, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38041528

RESUMEN

Genetic targeting (e.g., gene knockout and tagging) based on polymerase chain reaction (PCR) is a simple yet powerful approach for studying gene functions. Although originally developed in classic budding and fission yeast models, the same principle applies to other eukaryotic systems with efficient homologous recombination. One-step PCR-based genetic targeting is conventionally used but the sizes of the homologous arms that it generates for recombination-mediated genetic targeting are usually limited. Alternatively, gene targeting can also be performed via fusion PCR, which can create homologous arms that are orders of magnitude larger, therefore substantially increasing the efficiency of recombination-mediated genetic targeting. Here, we present GetPrimers (https://www.evomicslab.org/app/getprimers/), a generalized computational framework and web tool to assist automatic targeting and verification primer design for both one-step PCR-based and fusion PCR-based genetic targeting experiments. Moreover, GetPrimers by design runs for any given genetic background of any species with full genome scalability. Therefore, GetPrimers is capable of empowering high-throughput functional genomic assays at multipopulation and multispecies levels. Comprehensive experimental validations have been performed for targeting and verification primers designed by GetPrimers across multiple organism systems and experimental setups. We anticipate GetPrimers to become a highly useful and popular tool to facilitate easy and standardized gene modification across multiple systems.


Asunto(s)
Marcación de Gen , Schizosaccharomyces , Recombinación Homóloga , Técnicas de Inactivación de Genes , Secuencia de Bases , Schizosaccharomyces/genética , Reacción en Cadena de la Polimerasa
19.
PLoS Pathog ; 18(6): e1010584, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35696408

RESUMEN

Escherichia coli F18 is a common conditional pathogen that is associated with a variety of infections in humans and animals. LncRNAs have emerged as critical players in pathogen infection, but their role in the resistance of the host to bacterial diarrhea remains unknown. Here, we used piglets as animal model and identified an antisense lncRNA termed FUT3-AS1 as a host regulator related to E. coli F18 infection by RNA sequencing. Downregulation of FUT3-AS1 expression contributed to the enhancement of E. coli F18 resistance in IPEC-J2 cells. FUT3-AS1 knockdown reduced FUT3 expression via decreasing the H4K16ac level of FUT3 promoter. Besides, the FUT3-AS1/miR-212 axis could act as a competing endogenous RNA to regulate FUT3 expression. Functional analysis demonstrated that target FUT3 plays a vital role in the resistance of IPEC-J2 cells to E. coli F18 invasion. A Fut3-knockout mice model was established and Fut3-knockout mice obviously improved the ability of resistance to bacterial diarrhea. Interestingly, FUT3 could enhance E. coli F18 susceptibility by activating glycosphingolipid biosynthesis and toll-like receptor signaling which are related to receptor formation and immune response, respectively. In summary, we have identified a novel biomarker FUT3-AS1 that modulates E. coli F18 susceptibility via histone H4 modifications or miR-212/FUT3 axis, which will provide theoretical guidance to develop novel strategies for combating bacterial diarrhea in piglets.


Asunto(s)
Infecciones por Escherichia coli , MicroARNs , ARN Largo no Codificante , Enfermedades de los Porcinos , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Diarrea/genética , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Regulación Neoplásica de la Expresión Génica , Ratones , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Porcinos , Enfermedades de los Porcinos/genética
20.
Metab Eng ; 82: 29-40, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224832

RESUMEN

Yarrowia lipolytica is widely used in biotechnology to produce recombinant proteins, food ingredients and diverse natural products. However, unstable expression of plasmids, difficult and time-consuming integration of single and low-copy-number plasmids hampers the construction of efficient production pathways and application to industrial production. Here, by exploiting sequence diversity in the long terminal repeats (LTRs) of retrotransposons and ribosomal DNA (rDNA) sequences, a set of vectors and methods that can recycle multiple and high-copy-number plasmids was developed that can achieve stable integration of long-pathway genes in Y. lipolytica. By combining these sequences, amino acids and antibiotic tags with the Cre-LoxP system, a series of multi-copy site integration recyclable vectors were constructed and assessed using the green fluorescent protein (HrGFP) reporter system. Furthermore, by combining the consensus sequence with the vector backbone of a rapidly degrading selective marker and a weak promoter, multiple integrated high-copy-number vectors were obtained and high levels of stable HrGFP expression were achieved. To validate the universality of the tools, simple integration of essential biosynthesis modules was explored, and 7.3 g/L of L-ergothioneine and 8.3 g/L of (2S)-naringenin were achieved in a 5 L fermenter, the highest titres reported to date for Y. lipolytica. These novel multi-copy genome integration strategies provide convenient and effective tools for further metabolic engineering of Y. lipolytica.


Asunto(s)
Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Plásmidos/genética , Ingeniería Metabólica , Biotecnología , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA