Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain Sci ; 14(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38248259

RESUMEN

Depressive emotion (DE) refers to clinically relevant depressive symptoms without meeting the diagnostic criteria for depression. Studies have demonstrated that DE can cause spatial cognition impairment. However, the brain network mechanisms underlying DE interference spatial cognition remain unclear. This study aimed to reveal the differences in brain network connections between DE and healthy control (HC) groups during resting state and a spatial cognition task. The longer operation time of the DE group during spatial cognition task indicated DE interference spatial cognition. In the resting state stage, the DE group had weaker network connections in theta and alpha bands than the HC group had. Specifically, the electrodes in parietal regions were hubs of the differential networks, which are related to spatial attention. Moreover, in docking task stages, the left frontoparietal network connections in delta, beta, and gamma bands were stronger in the DE group than those of the HC group. The enhanced left frontoparietal connections in the DE group may be related to brain resource reorganization to compensate for spatial cognition decline and ensure the completion of spatial cognition tasks. Thus, these findings might provide new insights into the neural mechanisms of depressive emotion interference spatial cognition.

2.
Front Neurosci ; 16: 1010951, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325479

RESUMEN

Recent studies have shown that the recognition and monitoring of different valence emotions can effectively avoid the occurrence of human errors due to the decline in cognitive ability. The quality of features directly affects emotion recognition results, so this manuscript explores the effective electroencephalography (EEG) features for the recognition of different valence emotions. First, 110 EEG features were extracted from the time domain, frequency domain, time-frequency domain, spatial domain, and brain network, including all the current mainly used features. Then, the classification performance, computing time, and important electrodes of each feature were systematically compared and analyzed on the self-built dataset involving 40 subjects and the public dataset DEAP. The experimental results show that the first-order difference, second-order difference, high-frequency power, and high-frequency differential entropy features perform better in the recognition of different valence emotions. Also, the time-domain features, especially the first-order difference features and second-order difference features, have less computing time, so they are suitable for real-time emotion recognition applications. Besides, the features extracted from the frontal, temporal, and occipital lobes are more effective than others for the recognition of different valence emotions. Especially, when the number of electrodes is reduced by 3/4, the classification accuracy of using features from 16 electrodes located in these brain regions is 91.8%, which is only about 2% lower than that of using all electrodes. The study results can provide an important reference for feature extraction and selection in emotion recognition based on EEG.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA