Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Pharm ; 653: 123883, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38341048

RESUMEN

Microneedles (MNs) technology has been studied in transdermal drug delivery for more than 20 years with hundreds of clinical trials conducted. However, there are currently no commercially available MNs in medicine due to challenges in materials safety, cost-effective fabrication, and large-scale manufacturing. Herein, an approach for rapid and green fabrication of hydrogel microneedles (HMNs) based on infrared irradiation process was proposed for the first time. The optimized formulation consisted of polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP), which acted as cross-linked materials and pore-forming agents, respectively. The manufacturing method involved placing MNs patches under infrared irradiation at 70 °C for 2 min and annealing to obtain HMNs with excellent swelling behavior, mechanical strength, and biocompatibility. When model drugs azelaic acid (AZA) and matrine (MAT) were loaded into HMNs systems, the chemical stability of MAT was significantly improved. Ex vivo transdermal delivery experiments indicated that HMNs could achieve synchronous release of AZA and MAT, and the 24-hour percutaneous permeability rates of both drugs were 73.09 ± 0.48 % and 71.56 ± 1.23 %, respectively. In-vivo pharmacokinetic studies, HMNs administration presented dose-dependent stable blood drug concentrations for both drugs. Additionally, prominent anti-tumor efficacy and biosecurity were observed in the drug-loaded HMNs group in the pharmacodynamic evaluation. In summary, the efficient, convenient, and low-cost fabrication method based on infrared irradiation offers the possibility of mass production of drug-loaded HMNs, showing potential for industrial manufacturing development.


Asunto(s)
Sistemas de Liberación de Medicamentos , Melanoma , Humanos , Sistemas de Liberación de Medicamentos/métodos , Hidrogeles/farmacología , Agujas , Administración Cutánea , Piel
2.
Int J Nanomedicine ; 19: 4061-4079, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736651

RESUMEN

Purpose: Transdermal Drug Delivery System (TDDS) offers a promising alternative for delivering poorly soluble drugs, challenged by the stratum corneum's barrier effect, which restricts the pool of drug candidates suitable for TDDS. This study aims to establish a delivery platform specifically for highly lipophilic drugs requiring high doses (log P > 5, dose > 10 mg/kg/d), to improve their intradermal delivery and enhance solubility. Methods: Cannabidiol (CBD, log P = 5.91) served as the model drug. A CBD nanosuspension (CBD-NS) was prepared using a bottom-up method. The particle size, polydispersity index (PDI), zeta potential, and concentration of the CBD-NS were characterized. Subsequently, CBD-NS was incorporated into dissolving microneedles (DMNs) through a one-step manufacturing process. The intradermal dissolution abilities, physicochemical properties, mechanical strength, insertion depth, and release behavior of the DMNs were evaluated. Sprague-Dawley (SD) rats were utilized to assess the efficacy of the DMN patch in treating knee synovitis and to analyze its skin permeation kinetics and pharmacokinetic performance. Results: The CBD-NS, stabilized with Tween 80, exhibited a particle size of 166.83 ± 3.33 nm, a PDI of 0.21 ± 0.07, and a concentration of 46.11 ± 0.52 mg/mL. The DMN loaded with CBD-NS demonstrated favorable intradermal dissolution and mechanical properties. It effectively increased the delivery of CBD into the skin, extended the action's duration in vivo, and enhanced bioavailability. CBD-NS DMN exhibited superior therapeutic efficacy and safety in a rat model of knee synovitis, significantly inhibiting TNF-α and IL-1ß compared with the methotrexate subcutaneous injection method. Conclusion: NS technology effectively enhances the solubility of the poorly soluble drug CBD, while DMN facilitates penetration, extends the duration of action in vivo, and improves bioavailability. Furthermore, CBD has shown promising therapeutic outcomes in treating knee synovitis. This innovative drug delivery system is expected to offer a more efficient solution for the administration of highly lipophilic drugs akin to CBD, thereby facilitating high-dose administration.


Asunto(s)
Administración Cutánea , Cannabidiol , Agujas , Tamaño de la Partícula , Ratas Sprague-Dawley , Absorción Cutánea , Suspensiones , Animales , Cannabidiol/farmacocinética , Cannabidiol/administración & dosificación , Cannabidiol/química , Absorción Cutánea/efectos de los fármacos , Ratas , Suspensiones/química , Masculino , Piel/metabolismo , Piel/efectos de los fármacos , Solubilidad , Sistemas de Liberación de Medicamentos/métodos , Parche Transdérmico , Nanopartículas/química , Microinyecciones/métodos , Microinyecciones/instrumentación
3.
Food Chem ; 453: 139668, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38805943

RESUMEN

The Asia Pacific Metrology Program and the Accreditation Cooperation joint Proficiency Testing (PT) program for the quantification of genetically modified maize MON87427 was organized by the National Institute of Metrology, China, to enhance the measurement accuracy and metrological traceability in the region. Certified reference materials were employed as test samples; metrologically traceable certified reference values served as PT reference values (PTRVs) for evaluating the participants results. The consensus values obtained from the participants were higher than the assigned values, potentially due to the systematic effects of DNA extraction process. The participants' relatively poor overall performance by the ζ-score compared with z-score demonstrates their need to thoroughly investigate quantification bias to elevate the measurement capability of genetically modified (GM) content and deepen their understanding of uncertainty estimation. This program confirmed the importance of using metrologically traceable reference values instead of consensus values as PTRV for reliable performance assessment.


Asunto(s)
Plantas Modificadas Genéticamente , Zea mays , Zea mays/genética , Zea mays/química , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/química , Valores de Referencia , China , Ensayos de Aptitud de Laboratorios , Estándares de Referencia , Alimentos Modificados Genéticamente
4.
Iran J Pharm Res ; 22(1): e131819, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116561

RESUMEN

Background: Gestodene (GEST) is widely used in female contraception. It is currently being used as an oral contraceptive. However, unfortunately, oral contraceptives are often associated with several bothersome side effects and poor compliance. Therefore, a sustained delivery system for GEST to overcome these shortcomings is highly desirable. Objectives: The present study successfully developed a kind of novel dissolving microneedles (DMNs) with a potential for sustained release and a minimally invasive intradermal treatment of GEST. Methods: The dissolving microneedles containing GEST were fabricated using polyvinylpyrrolidone as the base material. The characteristics in vitro and pharmacokinetics in vivo of GEST-loaded DMNs were investigated. Results: The results showed that the microneedle could pierce the porcine skin and release the drug at an average dose of 20µg/cm2 daily for seven days. The pharmacokinetic experiment of the microneedles indicated that the plasma level of GEST in rats increased with increasing drug dosage, and the plasma drug concentration-time curves were much flatter compared with subcutaneous injection and oral administration. In addition, no cutaneous irritation was observed. Conclusions: GEST-loaded DMNs may be a promising intradermal sustained delivery system for contraceptive use.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA