Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(1): 209-229.e26, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608654

RESUMEN

Transcription factors (TFs) regulate gene programs, thereby controlling diverse cellular processes and cell states. To comprehensively understand TFs and the programs they control, we created a barcoded library of all annotated human TF splice isoforms (>3,500) and applied it to build a TF Atlas charting expression profiles of human embryonic stem cells (hESCs) overexpressing each TF at single-cell resolution. We mapped TF-induced expression profiles to reference cell types and validated candidate TFs for generation of diverse cell types, spanning all three germ layers and trophoblasts. Targeted screens with subsets of the library allowed us to create a tailored cellular disease model and integrate mRNA expression and chromatin accessibility data to identify downstream regulators. Finally, we characterized the effects of combinatorial TF overexpression by developing and validating a strategy for predicting combinations of TFs that produce target expression profiles matching reference cell types to accelerate cellular engineering efforts.


Asunto(s)
Diferenciación Celular , Factores de Transcripción , Humanos , Cromatina , Regulación de la Expresión Génica , Células Madre Embrionarias Humanas/metabolismo , Factores de Transcripción/metabolismo , Atlas como Asunto
3.
Nature ; 583(7818): 819-824, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32699411

RESUMEN

The thalamic reticular nucleus (TRN), the major source of thalamic inhibition, regulates thalamocortical interactions that are critical for sensory processing, attention and cognition1-5. TRN dysfunction has been linked to sensory abnormality, attention deficit and sleep disturbance across multiple neurodevelopmental disorders6-9. However, little is known about the organizational principles that underlie its divergent functions. Here we performed an integrative study linking single-cell molecular and electrophysiological features of the mouse TRN to connectivity and systems-level function. We found that cellular heterogeneity in the TRN is characterized by a transcriptomic gradient of two negatively correlated gene-expression profiles, each containing hundreds of genes. Neurons in the extremes of this transcriptomic gradient express mutually exclusive markers, exhibit core or shell-like anatomical structure and have distinct electrophysiological properties. The two TRN subpopulations make differential connections with the functionally distinct first-order and higher-order thalamic nuclei to form molecularly defined TRN-thalamus subnetworks. Selective perturbation of the two subnetworks in vivo revealed their differential role in regulating sleep. In sum, our study provides a comprehensive atlas of TRN neurons at single-cell resolution and links molecularly defined subnetworks to the functional organization of thalamocortical circuits.


Asunto(s)
Redes Reguladoras de Genes , Núcleos Talámicos/citología , Núcleos Talámicos/metabolismo , Animales , Análisis por Conglomerados , Femenino , Perfilación de la Expresión Génica , Hibridación Fluorescente in Situ , Metaloendopeptidasas/metabolismo , Ratones , Vías Nerviosas , Neuronas/metabolismo , Osteopontina/metabolismo , Técnicas de Placa-Clamp , RNA-Seq , Análisis de la Célula Individual , Sueño/genética , Sueño/fisiología , Núcleos Talámicos/fisiología , Transcriptoma
4.
Curr Issues Mol Biol ; 46(9): 9895-9905, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39329941

RESUMEN

The vascular endothelium is the first line of defense to prevent cardiovascular disease. Its optimal functioning and health are maintained by the interaction of the proteins-endothelial nitric oxide synthase (eNOS), sirtuin 1 (SIRT1), and endothelin 1 (ET1)-and the genes that encode them-NOS3, SIRT1, and EDN1, respectively. Aerobic exercise improves endothelial function by allegedly increasing endothelial shear stress (ESS). However, there are no current data exploring the acute effects of specific exercise-induced ESS intensities on these regulatory proteins and genes that are associated with endothelial function. The purpose of this study was to assess the acute changes in endothelial proteins and gene expression after exposure to low-, moderate-, and high-intensity exercise-induced ESS. Human umbilical vein endothelial cells (HUVECs) were exposed to resting ESS (18 dynes/cm2, 60 pulses per minute (PPM)), low ESS (35 dynes/cm2, 100 PPM), moderate ESS (50 dynes/cm2, 120 PPM), and high ESS (70 dynes/cm2, 150 PPM). Protein and gene expression were quantified by fluorescent Western blot and RTqPCR, respectively. All exercise conditions showed an increase in eNOS and SIRT1 expression and a decrease in NOS3 and SIRT1 gene expression when compared to resting conditions. In addition, there was no expression of ET1 and an increase in EDN1 gene expression when compared to resting conditions. These results show that (1) exercise-induced ESS increases the expressions of vascular protective proteins and (2) there is an inverse relationship between the proteins and their encoding genes immediately after exercise-induced ESS, suggesting that exercise has a previously unexplored translational role catalyzing mRNA to proteins.

5.
J Food Sci Technol ; 59(1): 75-85, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35068553

RESUMEN

The influence of polyamide 6 composite casings with silver-zinc crystals powder on some of the physicochemicalphysical-chemical, microbiological and sensory indicators of beef and chicken sausages during their storage was evaluated. Beef and chicken sausages were elaborated by using the conventional technology for sausage meat thin pasta; in each case, it was maintained a control batch to compare changes during the storage (4 and 12 °C, 75%-85% RH). To estimate the shelf life was considered sensory evaluation as a criterion for rejection. The results were processed as failure incomplete data via the Weibull distribution and it was admitted 5% of deteriorated units. It did not find a significant effect (p ≤ 0.05) due to the addition of silver-zinc crystals on the values of pH, aw, color, texture and sensory attributes of sausages, but did influence TBARS results, with lower values compared to control products. It reduced the counts of aerobic mesophilic microorganisms and lactic acid bacteria during the storage. The shelf life of chicken sausage was not affected at any storage temperature; while for the beef sausage stored at 4 °C, its shelf life increased in 9 days, although at 12 °C did not exist difference among treatments.

6.
J Food Sci Technol ; 59(10): 4045-4055, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36193350

RESUMEN

The objective of the present work was to develop a powder colorant for food use by spray drying from a hydroalcoholic extract of black cherry (Syzygium cumini [L.] Skeels). The content of total solids significantly affected the contents of anthocyanins and total polyphenols, while the air inlet temperature influenced (p ≤ 0.05) the spray drying performance. The optimal drying conditions were 165 °C as air inlet temperature and 25% of total solids, which allowed obtaining a powder colorant with total anthocyanin contents between 4273 and 5070 mg/1000 g, total polyphenols from 10,142 to 11,184 mg/1000 g, and a drying yield between 67.14 and 67.7%. The colorant presented 5.65% humidity, 25.2% hygroscopicity, poor fluidity, and high cohesiveness, with a dissolution time of 55 s. The degradation of anthocyanins, adjusted to zero-order kinetics, was directly proportional to the increase in temperature and time. The values of the component a* decreased with increasing temperature and time.

7.
Dev Biol ; 468(1-2): 93-100, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32976839

RESUMEN

Fragile X mental retardation 1 (FMR1) encodes the RNA binding protein FMRP. Loss of FMRP drives Fragile X syndrome (FXS), the leading inherited cause of intellectual disability and a leading monogenic cause of autism. While cortical hyperexcitability is a hallmark of FXS, the reported phenotypes and underlying mechanisms, including alterations in synaptic transmission and ion channel properties, are heterogeneous and at times contradictory. Here, we report the generation of new isogenic FMR1y/+ and FMR1y/- human pluripotent stem cell (hPSC) lines using CRISPR-Cas9 to facilitate the study of how complete FMRP loss, independent of genetic background, drives molecular and cellular alterations relevant for FXS. After differentiating these stem cell tools into excitatory neurons, we systematically assessed the impact of FMRP loss on intrinsic membrane and synaptic properties over time. Using whole-cell patch clamp analyses, we found that FMR1y/- neurons overall showed an increased intrinsic membrane excitability compared to age-matched FMR1y/+ controls, with no discernable alternations in synaptic transmission. Surprisingly, longitudinal analyses of cell intrinsic defects revealed that a majority of significant changes emerged early following in vitro differentiation and some were not stable over time. Collectively, this study provides a new isogenic hPSC model which can be further leveraged by the scientific community to investigate basic mechanisms of FMR1 gene function relevant for FXS. Moreover, our results suggest that precocious changes in the intrinsic membrane properties during early developmental could be a critical cellular pathology ultimately contributing to cortical hyperexcitability in FXS.


Asunto(s)
Diferenciación Celular , Membrana Celular/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Células Madre Embrionarias Humanas/metabolismo , Potenciales de la Membrana , Neuronas/metabolismo , Transmisión Sináptica , Línea Celular , Membrana Celular/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Células Madre Embrionarias Humanas/citología , Humanos
8.
J Neurosci ; 36(50): 12511-12529, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27974611

RESUMEN

Although the release of mesoaccumbal dopamine is certainly involved in rewarding responses, recent studies point to the importance of the interaction between it and glutamate. One important component of this network is the anterior nucleus accumbens shell (aNAcSh), which sends GABAergic projections into the lateral hypothalamus (LH) and receives extensive glutamatergic inputs from, among others, the medial prefrontal cortex (mPFC). The effects of glutamatergic activation of aNAcSh on the ingestion of rewarding stimuli as well as its effect in the LH and mPFC are not well understood. Therefore, we studied behaving mice that express a light-gated channel (ChR2) in glutamatergic fibers in their aNAcSh while recording from neurons in the aNAcSh, or mPFC or LH. In Thy1-ChR2, but not wild-type, mice activation of aNAcSh fibers transiently stopped the mice licking for sucrose or an empty sipper. Stimulation of aNAcSh fibers both activated and inhibited single-unit responses aNAcSh, mPFC, and LH, in a manner that maintains firing rate homeostasis. One population of licking-inhibited pMSNs in the aNAcSh was also activated by optical stimulation, suggesting their relevance in the cessation of feeding. A rewarding aspect of stimulation of glutamatergic inputs was found when the Thy1-ChR2 mice learned to nose-poke to self-stimulate these inputs, indicating that bulky stimulation of these fibers are rewarding in the sense of wanting. Stimulation of excitatory afferents evoked both monosynaptic and polysynaptic responses distributed in the three recorded areas. In summary, we found that activation of glutamatergic aNAcSh fibers is both rewarding and transiently inhibits feeding. SIGNIFICANCE STATEMENT: We have established that the activation of glutamatergic fibers in the anterior nucleus accumbens shell (aNAcSh) transiently stops feeding and yet, because mice self-stimulate, is rewarding in the sense of wanting. Moreover, we have characterized single-unit responses of distributed components of a hedonic network (comprising the aNAcSh, medial prefrontal cortex, and lateral hypothalamus) recruited by activation of glutamatergic aNAcSh afferents that are involved in encoding a positive valence signal important for the wanting of a reward and that transiently stops ongoing consummatory actions, such as licking.


Asunto(s)
Conducta Alimentaria/fisiología , Glutamatos/fisiología , Área Hipotalámica Lateral/fisiología , Fibras Nerviosas/fisiología , Núcleo Accumbens/citología , Núcleo Accumbens/fisiología , Corteza Prefrontal/fisiología , Recompensa , Animales , Channelrhodopsins , Femenino , Masculino , Ratones , Neuronas Aferentes/fisiología , Optogenética , Técnicas de Placa-Clamp , Autoestimulación , Sinapsis/fisiología
9.
Bone ; 187: 117211, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39053792

RESUMEN

Osteonecrosis of the jaw (ONJ) is a relatively rare side effect after prolonged use of bisphosphonates, which are drugs used to treat bone resorption in osteoporosis and certain cancers. This study introduces a novel ONJ model in rats by combining exposure to bisphosphonates, oral surgery, and bacterial inoculation. Potential ONJ preventive effects of polyguanidine (GuaDex) or antibiotics were evaluated. The study consisted of twenty-four male Wistar rats were divided into four groups. Groups 1 to 3 were given weekly doses of i.v. Zoledronic acid (ZA), four weeks before and two weeks after an osteotomy procedure on their left mandibular first molar. Group 4 was a negative control. Streptococcus gordonii bacteria were introduced into the osteotomy pulp chamber and via the food for seven days. On day eight, the rats were given different treatments. Group 1 was given a GuaDex injection into the osteotomy socket, Group 2 was given an intramuscular (i.m.) injection of clindamycin, Group 3 (positive control) was given an i.m. injection of saline, and Group 4 was given an i.m. injection of saline. Blood samples were taken two weeks after the osteotomy procedure, after which the rats were euthanized. Bone healing, bone mineral density, histology, and blood status were analyzed. The results showed that Group 1 (GuaDex) had no ONJ, extensive ongoing bone regeneration, active healing activity, vascularization, and no presence of bacteria. Group 2 (clindamycin) showed early stages of ONJ, avascular areas, and bacteria. Group 3 showed stages of ONJ, inflammatory infiltrates, defective healing, and bacterial presence, and Group 4 had normal healing activity and no bacterial presence. Conclusion: ZA treatment and bacterial inoculation after tooth extraction inhibited bone remodeling/healing and induced ONJ characteristic lesions in the rats. Only GuaDex apparently prevented ONJ development, stimulated bone remodeling, and provided an antimicrobial effect.


Asunto(s)
Osteonecrosis de los Maxilares Asociada a Difosfonatos , Ratas Wistar , Animales , Masculino , Osteonecrosis de los Maxilares Asociada a Difosfonatos/prevención & control , Osteonecrosis de los Maxilares Asociada a Difosfonatos/patología , Ratas , Difosfonatos/farmacología , Difosfonatos/efectos adversos , Guanidinas/farmacología , Guanidinas/uso terapéutico
10.
Cell Rep Med ; 5(5): 101534, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38670100

RESUMEN

Thalamocortical (TC) circuits are essential for sensory information processing. Clinical and preclinical studies of autism spectrum disorders (ASDs) have highlighted abnormal thalamic development and TC circuit dysfunction. However, mechanistic understanding of how TC dysfunction contributes to behavioral abnormalities in ASDs is limited. Here, our study on a Shank3 mouse model of ASD reveals TC neuron hyperexcitability with excessive burst firing and a temporal mismatch relationship with slow cortical rhythms during sleep. These TC electrophysiological alterations and the consequent sensory hypersensitivity and sleep fragmentation in Shank3 mutant mice are causally linked to HCN2 channelopathy. Restoring HCN2 function early in postnatal development via a viral approach or lamotrigine (LTG) ameliorates sensory and sleep problems. A retrospective case series also supports beneficial effects of LTG treatment on sensory behavior in ASD patients. Our study identifies a clinically relevant circuit mechanism and proposes a targeted molecular intervention for ASD-related behavioral impairments.


Asunto(s)
Trastorno del Espectro Autista , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Proteínas del Tejido Nervioso , Tálamo , Animales , Tálamo/metabolismo , Tálamo/patología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Ratones , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/patología , Lamotrigina/farmacología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Canalopatías/genética , Canalopatías/metabolismo , Canalopatías/patología , Humanos , Modelos Animales de Enfermedad , Masculino , Neuronas/metabolismo , Femenino , Ratones Endogámicos C57BL , Mutación/genética , Sueño/fisiología , Sueño/efectos de los fármacos , Sueño/genética , Canales de Potasio
11.
BMC Neurosci ; 14: 60, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23782743

RESUMEN

BACKGROUND: Previous work showed differences in the polysynaptic activation of GABAergic synapses during corticostriatal suprathreshold responses in direct and indirect striatal projection neurons (dSPNs and iSPNs). Here, we now show differences and similarities in the polysynaptic activation of cortical glutamatergic synapses on the same responses. Corticostriatal contacts have been extensively studied. However, several questions remain unanswered, e.g.: what are the differences and similarities in the responses to glutamate in dSPNs and iSPNs? Does glutamatergic synaptic activation exhibits a distribution of latencies over time in vitro? That would be a strong suggestion of polysynaptic cortical convergence. What is the role of kainate receptors in corticostriatal transmission? Current-clamp recordings were used to answer these questions. One hypothesis was: if prolonged synaptic activation distributed along time was present, then it would be mainly generated from the cortex, and not from the striatum. RESULTS: By isolating responses from AMPA-receptors out of the complex suprathreshold response of SPNs, it is shown that a single cortical stimulus induces early and late synaptic activation lasting hundreds of milliseconds. Prolonged responses depended on cortical stimulation because they could not be elicited using intrastriatal stimulation, even if GABAergic transmission was blocked. Thus, the results are not explained by differences in evoked inhibition. Moreover, inhibitory participation was larger after cortical than after intrastriatal stimulation. A strong activation of interneurons was obtained from the cortex, demonstrating that polysynaptic activation includes the striatum. Prolonged kainate (KA) receptor responses were also elicited from the cortex. Responses of dSPNs and iSPNs did not depend on the cortical area stimulated. In contrast to AMPA-receptors, responses from NMDA- and KA-receptors do not exhibit early and late responses, but generate slow responses that contribute to plateau depolarizations. CONCLUSIONS: As it has been established in previous physiological studies in vivo, synaptic invasion over different latencies, spanning hundreds of milliseconds after a single stimulus strongly indicates convergent polysynaptic activation. Interconnected cortical neurons converging on the same SPNs may explain prolonged corticostriatal responses. Glutamate receptors participation in these responses is described as well as differences and similarities between dSPNs and iSPNs.


Asunto(s)
Corteza Cerebral/citología , Cuerpo Estriado/citología , Vías Nerviosas/fisiología , Neuronas/fisiología , Receptores de Glutamato/metabolismo , Sinapsis/metabolismo , Animales , Bicuculina/farmacología , Biofisica , Estimulación Eléctrica , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Ratones , Ratones Transgénicos , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Receptores de Glutamato/clasificación , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
12.
Neuroscience ; 458: 153-165, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33428968

RESUMEN

Differences in the intrinsic properties of intralaminar thalamo-striatal neurons such as expressing low-threshold-spikes (LTS) or after hyperpolarizing potentials (AHPs) of different duration have been attributed to different maturation stages. However, two morphological types: "diffuse" and "bushy" have been described. Therefore, we explored whether electrophysiological differences persist in adult mice using whole cell recordings. Some recorded neurons were identified by intracellular labeling with biocytin and double labeling with retrograde or anterograde tracings using Cre-mice. We classified these neurons by their AHPs during spontaneous firing. Neurons with long duration AHPs, with fast and slow components, were mostly found in the parafascicular (Pf) nucleus. Neurons with brief AHPs were mainly found in the central lateral (CL) nucleus. However, neurons with both AHPs were found in both nuclei in different proportions. Firing frequency adaptation differed between these neuron classes: those with prolonged AHPs exhibited firing frequency adaptation with fast and slow time constants whereas those with brief AHPs were slow adapters. Neurons with more prolonged AHPs had significant higher input resistances than neurons with brief AHPs. Both cell classes could fire in two modes: trains of single action potentials at depolarized potentials or high frequency bursts on top of LTS at more hyperpolarized potentials. LTS were probably generated by Cav3 calcium channels since they were blocked by the selective antagonist TTA-P2. About 11% of neurons with brief AHPs and 55% of neurons with prolonged AHPs do not show LTS and bursts, even when potassium currents are blocked.


Asunto(s)
Cuerpo Estriado , Neuronas , Potenciales de Acción , Animales , Canales de Calcio , Ratones
13.
J Vis Exp ; (177)2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34866625

RESUMEN

Fine motor skills are essential in everyday life and can be compromised in several nervous system disorders. The acquisition and performance of these tasks require sensory-motor integration and involve precise control of bilateral brain circuits. Implementing unimanual behavioral paradigms in animal models will improve the understanding of the contribution of brain structures, like the striatum, to complex motor behavior as it allows manipulation and recording of neural activity of specific nuclei in control conditions and disease during the performance of the task. Since its creation, optogenetics has been a dominant tool for interrogating the brain by enabling selective and targeted activation or inhibition of neuronal populations. The combination of optogenetics with behavioral assays sheds light on the underlying mechanisms of specific brain functions. Wireless head-mounted systems with miniaturized light-emitting diodes (LEDs) allow remote optogenetic control in an entirely free-moving animal. This avoids the limitations of a wired system being less restrictive for animals' behavior without compromising light emission efficiency. The current protocol combines a wireless optogenetics approach with high-speed videography in a unimanual dexterity task to dissect the contribution of specific neuronal populations to fine motor behavior.


Asunto(s)
Encéfalo , Optogenética , Animales , Conducta Animal , Encéfalo/fisiología , Cuerpo Estriado , Neuronas/fisiología , Optogenética/métodos , Tecnología Inalámbrica
14.
Obes Surg ; 30(12): 5129-5130, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32594467

RESUMEN

Wernicke encephalopathy (WE) is a rare and serious complication of obesity surgery. This is a report of one case of WE after a sleeve gastrectomy. The diagnosis is primarily clinical; the persistent and prolonged vomiting, and noncompliance to vitamin intake are two major risk factors to develop WE. It is especially important to rule out for stenosis or obstructions of the upper digestive tract after surgery. MRI is useful with high specificity to support the diagnosis as in our case, and discard other causes. Treatment should not be delayed. The outcome of WE is not always predictable. The full recovery is not always achieved, but there is improvement over the time as in this case.


Asunto(s)
Cirugía Bariátrica , Obesidad Mórbida , Encefalopatía de Wernicke , Cirugía Bariátrica/efectos adversos , Constricción Patológica , Gastrectomía/efectos adversos , Humanos , Obesidad Mórbida/cirugía , Encefalopatía de Wernicke/diagnóstico , Encefalopatía de Wernicke/tratamiento farmacológico , Encefalopatía de Wernicke/etiología
15.
Transl Psychiatry ; 10(1): 29, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-32066662

RESUMEN

CACNA1I, a schizophrenia risk gene, encodes a subtype of voltage-gated T-type calcium channel CaV3.3. We previously reported that a patient-derived missense de novo mutation (R1346H) of CACNA1I impaired CaV3.3 channel function. Here, we generated CaV3.3-RH knock-in animals, along with mice lacking CaV3.3, to investigate the biological impact of R1346H (RH) variation. We found that RH mutation altered cellular excitability in the thalamic reticular nucleus (TRN), where CaV3.3 is abundantly expressed. Moreover, RH mutation produced marked deficits in sleep spindle occurrence and morphology throughout non-rapid eye movement (NREM) sleep, while CaV3.3 haploinsufficiency gave rise to largely normal spindles. Therefore, mice harboring the RH mutation provide a patient derived genetic model not only to dissect the spindle biology but also to evaluate the effects of pharmacological reagents in normalizing sleep spindle deficits. Importantly, our analyses highlighted the significance of characterizing individual spindles and strengthen the inferences we can make across species over sleep spindles. In conclusion, this study established a translational link between a genetic allele and spindle deficits during NREM observed in schizophrenia patients, representing a key step toward testing the hypothesis that normalizing spindles may be beneficial for schizophrenia patients.


Asunto(s)
Canales de Calcio Tipo T , Esquizofrenia , Animales , Electroencefalografía , Humanos , Ratones , Esquizofrenia/genética , Sueño , Sueño REM
16.
Nat Neurosci ; 23(12): 1629-1636, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32807948

RESUMEN

Recent success in identifying gene-regulatory elements in the context of recombinant adeno-associated virus vectors has enabled cell-type-restricted gene expression. However, within the cerebral cortex these tools are largely limited to broad classes of neurons. To overcome this limitation, we developed a strategy that led to the identification of multiple new enhancers to target functionally distinct neuronal subtypes. By investigating the regulatory landscape of the disease gene Scn1a, we discovered enhancers selective for parvalbumin (PV) and vasoactive intestinal peptide-expressing interneurons. Demonstrating the functional utility of these elements, we show that the PV-specific enhancer allowed for the selective targeting and manipulation of these neurons across vertebrate species, including humans. Finally, we demonstrate that our selection method is generalizable and characterizes additional PV-specific enhancers with exquisite specificity within distinct brain regions. Altogether, these viral tools can be used for cell-type-specific circuit manipulation and hold considerable promise for use in therapeutic interventions.


Asunto(s)
Dependovirus/genética , Vectores Genéticos/genética , Interneuronas/fisiología , Animales , Callithrix , Corteza Cerebral/citología , Femenino , Humanos , Macaca mulatta , Ratones , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.1/genética , Neuronas , Parvalbúminas/fisiología , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie , Péptido Intestinal Vasoactivo/fisiología
17.
Surgery ; 166(4): 460-468, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31307774

RESUMEN

BACKGROUND: The operative experience of today's surgery residents is different than years past. Although overall volume remains stable, the composition is changing. As such, trends in open versus laparoscopic surgery for general surgery residents were examined. METHODS: The Accreditation Council for Graduate Medical Education national operative log reports from 1994 to 2018 were analyzed for the 15 operations recorded as both open and laparoscopic. Operative volume was examined for total major, surgeon chief, and surgeon junior cases. RESULTS: From 1994 to 2018, 26,258 residents graduated with 955.2 ± 31.7 total major cases. The 15 identified operations comprised 38.4% of this volume. During the 25-year study period, laparoscopic volume increased (+9.67 cases per year), whereas open volume decreased (-3.25 cases per year, P < .0001 for each). Similar trends were seen for both chief and surgeon junior cases (P < .05 for both). For 2 of the 4 core general surgery operations examined (hernia and proctocolectomy), the open approach was still the dominant approach, providing residents an opportunity to perform open surgery in an era of increasing minimally invasive approaches. CONCLUSION: For select procedures, the frequency of laparoscopy has surpassed open surgery for general surgery residents. These trends raise the concern that when necessary, general surgery graduates may not have adequate experience converting to open.


Asunto(s)
Competencia Clínica , Educación de Postgrado en Medicina/métodos , Cirugía General/educación , Laparoscopía/educación , Laparotomía/educación , Procedimientos Quirúrgicos Operativos/educación , Adulto , Bases de Datos Factuales , Femenino , Humanos , Internado y Residencia/métodos , Laparoscopía/métodos , Laparotomía/métodos , Masculino , Estudios Retrospectivos , Procedimientos Quirúrgicos Operativos/métodos , Estados Unidos
18.
Neuroreport ; 30(6): 457-462, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30920433

RESUMEN

The ionic driving force for the chloride-permeable GABAA receptor is subject to spatial control and distribution of chloride transporters. NKCC1 and KCC2 are mostly expressed in neurons in a specific manner. In the striatum, the localization of these transporters in identified neurons is unknown. In this study, the expression of these transporters was found to be different between projection neurons and interneurons. NKCC1 immunoreactivity was observed in the soma of adult BAC-D1-eGFP+ and D2-eGFP+ striatal projection neurons (SPNs). KCC2 was not expressed in either projection neuron and immunoreactivity to this transporter was observed only in the neuropile. However, NKCC1 and KCC2 co-transporters were not localized in intracellular biocytin-injected dendrites of SPNs of the direct or indirect pathways (D1-SPNs and D2-SPNs). Experiments with PV Cre transgenic mice transfected with Cre-dependent adeno-associated viruses containing tdTomato in the striatum showed a cell-type-specific distribution of KCC2 chloride transporter co-expression associated with PV interneurons. Thus, depolarizing actions of GABA responses in adult projection neurons can be explained by the expression and somatic localization of the NKCC1 transporters. A somato/dendritic distribution of KCC2 expression was observed only in striatal interneurons and corresponds to the hyperpolarizing action of GABA recorded in these cells. This correlates the different roles for GABA actions in striatal neuronal excitability with the expression of specific chloride transporters.


Asunto(s)
Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Simportadores/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Cotransportadores de K Cl
20.
Nucleic Acids Res ; 32(16): 4732-41, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15356290

RESUMEN

Robust methods to detect DNA-binding proteins from structures of unknown function are important for structural biology. This paper describes a method for identifying such proteins that (i) have a solvent accessible structural motif necessary for DNA-binding and (ii) a positive electrostatic potential in the region of the binding region. We focus on three structural motifs: helix-turn-helix (HTH), helix-hairpin-helix (HhH) and helix-loop-helix (HLH). We find that the combination of these variables detect 78% of proteins with an HTH motif, which is a substantial improvement over previous work based purely on structural templates and is comparable to more complex methods of identifying DNA-binding proteins. Similar true positive fractions are achieved for the HhH and HLH motifs. We see evidence of wide evolutionary diversity for DNA-binding proteins with an HTH motif, and much smaller diversity for those with an HhH or HLH motif.


Asunto(s)
Biología Computacional/métodos , Proteínas de Unión al ADN/química , Secuencias de Aminoácidos , Sitios de Unión , Proteínas de Unión al ADN/metabolismo , Bases de Datos de Proteínas , Genómica , Secuencias Hélice-Asa-Hélice , Secuencias Hélice-Giro-Hélice , Modelos Moleculares , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA