Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925417

RESUMEN

Craniofacial neuropathic pain affects millions of people worldwide and is often difficult to treat. Two key mechanisms underlying this condition are a loss of the negative control exerted by inhibitory interneurons and an early microglial reaction. Basic features of these mechanisms, however, are still poorly understood. Using the chronic constriction injury of the infraorbital nerve (CCI-IoN) model of neuropathic pain in mice, we have examined the changes in the expression of GAD, the synthetic enzyme of GABA, and GlyT2, the membrane transporter of glycine, as well as the microgliosis that occur at early (5 days) and late (21 days) stages post-CCI in the medullary and upper spinal dorsal horn. Our results show that CCI-IoN induces a down-regulation of GAD at both postinjury survival times, uniformly across the superficial laminae. The expression of GlyT2 showed a more discrete and heterogeneous reduction due to the basal presence in lamina III of 'patches' of higher expression, interspersed within a less immunoreactive 'matrix', which showed a more substantial reduction in the expression of GlyT2. These patches coincided with foci lacking any perceptible microglial reaction, which stood out against a more diffuse area of strong microgliosis. These findings may provide clues to better understand the neural mechanisms underlying allodynia in neuropathic pain syndromes.


Asunto(s)
Microglía/metabolismo , Neuralgia/etiología , Asta Dorsal de la Médula Espinal/metabolismo , Animales , Conducta Animal , Proteínas de Unión al Calcio/metabolismo , Densitometría , Modelos Animales de Enfermedad , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Hiperalgesia/etiología , Masculino , Nervio Maxilar/lesiones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Microglía/patología , Asta Dorsal de la Médula Espinal/patología , Núcleo Caudal del Trigémino/metabolismo , Núcleo Caudal del Trigémino/patología
2.
J Headache Pain ; 21(1): 96, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32762640

RESUMEN

BACKGROUND: Stimulation of the occipital or trigeminal nerves has been successfully used to treat chronic refractory neurovascular headaches such as migraine or cluster headache, and painful neuropathies. Convergence of trigeminal and occipital sensory afferents in the 'trigeminocervical complex' (TCC) from cutaneous, muscular, dural, and visceral sources is a key mechanism for the input-induced central sensitization that may underlie the altered nociception. Both excitatory (glutamatergic) and inhibitory (GABAergic and glycinergic) mechanisms are involved in modulating nociception in the spinal and medullary dorsal horn neurons, but the mechanisms by which nerve stimulation effects occur are unclear. This study was aimed at investigating the acute effects of electrical stimulation of the greater occipital nerve (GON) on the responses of neurons in the TCC to the mechanical stimulation of the vibrissal pad. METHODS: Adult male Wistar rats were used. Neuronal recordings were obtained in laminae II-IV in the TCC in control, sham and infraorbital chronic constriction injury (CCI-IoN) animals. The GON was isolated and electrically stimulated. Responses to the stimulation of vibrissae by brief air pulses were analyzed before and after GON stimulation. In order to understand the role of the neurotransmitters involved, specific receptor blockers of NMDA (AP-5), GABAA (bicuculline, Bic) and Glycine (strychnine, Str) were applied locally. RESULTS: GON stimulation produced a facilitation of the response to light facial mechanical stimuli in controls, and an inhibition in CCI-IoN cases. AP-5 reduced responses to GON and vibrissal stimulation and blocked the facilitation of GON on vibrissal responses found in controls. The application of Bic or Str significantly reduced the facilitatory effect of GON stimulation on the response to vibrissal stimulation in controls. However, the opposite effect was found when GABAergic or Glycinergic transmission was prevented in CCI-IoN cases. CONCLUSIONS: GON stimulation modulates the responses of TCC neurons to light mechanical input from the face in opposite directions in controls and under CCI-IoN. This modulation is mediated by GABAergic and Glycinergic mechanisms. These results will help to elucidate the neural mechanisms underlying the effectiveness of nerve stimulation in controlling painful craniofacial disorders, and may be instrumental in identifying new therapeutic targets for their prevention and treatment.


Asunto(s)
Nervios Espinales/fisiopatología , Nervio Trigémino/fisiopatología , Neuralgia del Trigémino/fisiopatología , Vibrisas , Animales , Cefalalgia Histamínica , Estimulación Eléctrica , Cabeza , Trastornos de Cefalalgia , Masculino , Trastornos Migrañosos , Neuronas/fisiología , Nocicepción , Ratas , Ratas Sprague-Dawley , Ratas Wistar
3.
Life (Basel) ; 14(3)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38541615

RESUMEN

Postoperative pain after knee arthroplasty (TKA) is a reality that continues to be experienced today. Recently, virtual reality (VR) has demonstrated effectiveness in the management of pain. Our aim was to review the original controlled trials evaluating the effectiveness of VR for pain management and quality of life after TKA. Six databases were searched for articles published from inception to September 2023, following (PRISMA) guidelines. The methodological quality was assessed using the Risk of Bias tool for Randomized Trials (ROB2). Five RCTs were included in the systematic review, and four of them in the meta-analysis. The effectiveness of VR for short term pain relief was superior compared to the control (MD = -0.8 cm; CI 95%: -1.3 to -0.4; p < 0.001). VR showed a greater effect on the secondary outcomes of WOMAC (MD = -4.6 points; CI 95%: -6.5 to -2.6, p < 0.001) and the HSS scale (MD = 6.5 points; CI 95%: 0.04 to 13.0, p = 0.049). However, no differences were found in the effect on the ROM between groups (MD = 3.4 grades; CI 95%: -6.0 to 12.8, p = 0.48). Our findings suggest that the use of virtual reality during the postoperative period could be an effective non-pharmacological therapy in relieving acute pain, compared to a control intervention, with a very low degree of certainty according to the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE). However, the low methodological quality of the articles limits our findings.

4.
Geroscience ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954130

RESUMEN

Pain perception is influenced by sex and aging, with previous studies indicating the involvement of aromatase, the estradiol synthase enzyme, in regulating pain perception. Previous research has established the presence of aromatase in dorsal root ganglia sensory neurons and its role in modulating pain perception. The present study aims to explore the implications of aging and sex on the expression of aromatase and estrogen receptors in the trigeminal ganglion. The study examined mRNA levels of aromatase, ERs, and the androgen receptor (AR) in the trigeminal ganglion of 3-month-old and 27-month-old male and female mice, as well as 3-month-old mice from the four-core genotype (FCG) transgenic model. The latter facilitates the assessment of gonadal hormone and sex chromosome implications for sex-specific traits. Aromatase localization in the ganglion was further assessed through immunohistochemistry. Aromatase immunoreactivity was observed for the first time in sensory neurons within the trigeminal ganglion. Trigeminal ganglion gene expressions were detected for aromatase, ERs, and AR in both sexes. Aromatase, ERß, and GPER gene expressions were higher in young males versus young females. Analyses of the FCG model indicated that sex differences depended solely on gonadal sex. The aging process induced an enhancement in the expression of aromatase, ERs, and AR genes across both sexes, culminating in a reversal of the previously observed gender-based differences. the potential impact of estrogen synthesis and signaling in the trigeminal ganglion on age and sex differences warrants consideration, particularly in relation to trigeminal sensory functions and pain perception.

5.
Front Cell Neurosci ; 17: 1208121, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37475984

RESUMEN

Diabetic neuropathy is the loss of sensory function beginning distally in the lower extremities, which is also characterized by pain and substantial morbidity. Furthermore, the locus coeruleus (LC) nucleus has been proposed to play an important role in descending pain control through the activation of α2-noradrenergic (NA) receptors in the spinal dorsal horn. We studied, on control and diabetic mice, the effect of electrical stimulation of the LC nucleus on the tactile responses in the caudalis division of the spinal trigeminal nucleus (Sp5C), which is involved in the relay of orofacial nociceptive information. Diabetes was induced in young adult C57BL/6J mice with one intraperitoneal injection of streptozotocin (50 mg/kg) daily for 5 days. The diabetic animals showed pain in the orofacial area because they had a decrease in the withdrawal threshold to the mechanical stimulation in the vibrissal pad. LC electrical stimulation induced the inhibition of vibrissal responses in the Sp5C neurons when applied at 50 and 100 ms before vibrissal stimulation in the control mice; however, the inhibition was reduced in the diabetic mice. These effects may be due to a reduction in the tyrosine hydroxylase positive (TH+) fibers in the Sp5C, as was observed in diabetic mice. LC-evoked inhibition was decreased by an intraperitoneal injection of the antagonist of the α2-NA receptors, yohimbine, indicating that it was due to the activation of α2-NA receptors. The decrease in the LC-evoked inhibition in the diabetic mice was partially recovered when clonidine, a non-selective α2-agonist, was injected intraperitoneally. These findings suggest that in diabetes, there is a reduction in the NA inputs from the LC in the Sp5C that may favor the development of chronic pain.

6.
Cells ; 12(11)2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37296598

RESUMEN

Aging is a physiological process accompanied by a decline in cognitive performance. The cholinergic neurons of the basal forebrain provide projections to the cortex that are directly engaged in many cognitive processes in mammals. In addition, basal forebrain neurons contribute to the generation of different rhythms in the EEG along the sleep/wakefulness cycle. The aim of this review is to provide an overview of recent advances grouped around the changes in basal forebrain activity during healthy aging. Elucidating the underlying mechanisms of brain function and their decline is especially relevant in today's society as an increasingly aged population faces higher risks of developing neurodegenerative diseases such as Alzheimer's disease. The profound age-related cognitive deficits and neurodegenerative diseases associated with basal forebrain dysfunction highlight the importance of investigating the aging of this brain region.


Asunto(s)
Enfermedad de Alzheimer , Prosencéfalo Basal , Animales , Envejecimiento/fisiología , Neuronas Colinérgicas , Cognición , Mamíferos
7.
Cells ; 11(4)2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35203366

RESUMEN

Aging is accompanied by a decline in cognition that can be due to a lower IGF-I level. We studied response facilitation induced in primary somatosensory (S1) cortical neurons by repetitive stimulation of whiskers in young and old mice. Layer 2/3 and 5/6 neurons were extracellularly recorded in young (≤ 6 months of age) and old (≥ 20 month of age) anesthetized mice. IGF-I injection in S1 cortex (10 nM; 0.2 µL) increased whisker responses in young and old animals. A stimulation train at 8 Hz induced a long-lasting response facilitation in only layer 2/3 neurons of young animals. However, all cortical neurons from young and old animals showed long-lasting response facilitation when IGF-I was applied in the S1 cortex. The reduction in response facilitation in old animals can be due to a reduction in the IGF-I receptors as was indicated by the immunohistochemistry study. Furthermore, a reduction in the performance of a whisker discrimination task was observed in old animals. In conclusion, our findings indicate that there is a reduction in the synaptic plasticity of S1 neurons during aging that can be recovered by IGF-I. Therefore, it opens the possibility of use IGF-I as a therapeutic tool to ameliorate the effects of heathy aging.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Corteza Somatosensorial , Envejecimiento , Animales , Factor I del Crecimiento Similar a la Insulina/farmacología , Ratones , Plasticidad Neuronal/fisiología , Vibrisas
8.
Redox Biol ; 49: 102210, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34922273

RESUMEN

Aggregates of the microtubule-associated protein tau are a common marker of neurodegenerative diseases collectively termed as tauopathies, such as Alzheimer's disease (AD) and frontotemporal dementia. Therapeutic strategies based on tau have failed in late stage clinical trials, suggesting that tauopathy may be the consequence of upstream causal mechanisms. As increasing levels of reactive oxygen species (ROS) may trigger protein aggregation or modulate protein degradation and, we had previously shown that the ROS producing enzyme NADPH oxidase 4 (NOX4) is a major contributor to cellular autotoxicity, this study was designed to evaluate if NOX4 is implicated in tauopathy. Our results show that NOX4 is upregulated in patients with frontotemporal lobar degeneration and AD patients and, in a humanized mouse model of tauopathy induced by AVV-TauP301L brain delivery. Both, global knockout and neuronal knockdown of the Nox4 gene in mice, diminished the accumulation of pathological tau and positively modified established tauopathy by a mechanism that implicates modulation of the autophagy-lysosomal pathway (ALP) and, consequently, improving the macroautophagy flux. Moreover, neuronal-targeted NOX4 knockdown was sufficient to reduce neurotoxicity and prevent cognitive decline, even after induction of tauopathy, suggesting a direct and causal role for neuronal NOX4 in tauopathy. Thus, NOX4 is a previously unrecognized causative, mechanism-based target in tauopathies and blood-brain barrier permeable specific NOX4 inhibitors could have therapeutic potential even in established disease.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Tauopatías , Enfermedad de Alzheimer/genética , Animales , Encéfalo/metabolismo , Demencia Frontotemporal/metabolismo , Humanos , Ratones , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Tauopatías/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
9.
Redox Biol ; 38: 101789, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33212416

RESUMEN

Heme oxygenase-1 (HO-1) is an inducible enzyme known for its anti-inflammatory, antioxidant and neuroprotective effects. However, increased expression of HO-1 during aging and age-related neurodegenerative diseases have been associated to neurotoxic ferric iron deposits. Being microglia responsible for the brain's innate immune response, the aim of this study was to understand the role of microglial HO-1 under inflammatory conditions in aged mice. For this purpose, aged wild type (WT) and LysMCreHmox1△△ (HMOX1M-KO) mice that lack HO-1 in microglial cells, were used. Aged WT mice showed higher basal expression levels of microglial HO-1 in the brain than adult mice. This increase was even higher when exposed to an inflammatory stimulus (LPS via i.p.) and was accompanied by alterations in different iron-related metabolism proteins, resulting in an increase of iron deposits, oxidative stress, ferroptosis and cognitive decline. Furthermore, microglia exhibited a primed phenotype and increased levels of inflammatory markers such as iNOS, p65, IL-1ß, TNF-α, Caspase-1 and NLRP3. Interestingly, all these alterations were prevented in aged HMOX1M-KO and WT mice treated with the HO-1 inhibitor ZnPPIX. In order to determine the effects of microglial HO-1-dependent iron overload, aged WT mice were treated with the iron chelator deferoxamine (DFX). DFX caused major improvements in iron, inflammatory and behavioral alterations found in aged mice exposed to LPS. In conclusion, this study highlights how microglial HO-1 overexpression contributes to neurotoxic iron accumulation providing deleterious effects in aged mice exposed to an inflammatory insult.


Asunto(s)
Envejecimiento , Hemo-Oxigenasa 1 , Hierro/metabolismo , Microglía , Animales , Antiinflamatorios , Hemo-Oxigenasa 1/antagonistas & inhibidores , Hemo-Oxigenasa 1/genética , Lipopolisacáridos , Proteínas de la Membrana , Ratones
10.
Dis Model Mech ; 13(10)2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33174532

RESUMEN

Neuroinflammation is one of the main physiopathological mechanisms of amyotrophic lateral sclerosis (ALS), produced by the chronic activation of microglia in the CNS. This process is triggered by the persistent activation of the ATP-gated P2X7 receptor (P2RX7, hereafter referred to as P2X7R). The present study aimed to evaluate the effects of the chronic treatment with the P2X7R antagonist JNJ-47965567 in the development and progression of ALS in the SOD1G93A murine model. SOD1G93A mice were intraperitoneally (i.p.) injected with either 30 mg/kg of JNJ-47965567 or vehicle 4 times per week, from pre-onset age (here, postnatal day 60; P60) until study endpoint. Body weight, motor coordination, phenotypic score, disease onset and survival were measured throughout the study, and compared between vehicle- and drug-injected groups. Treatment with the P2X7R antagonist JNJ-47965567 delayed disease onset, reduced body weight loss and improved motor coordination and phenotypic score in female SOD1G93A mice, although it did not increase lifespan. Interestingly, neither beneficial nor detrimental effects were observed in males in any of the analyzed parameters. Treatment did not affect motor neuron survival or ChAT, Iba-1 and P2X7R protein expression in endpoint individuals of mixed sexes. Overall, chronic administration of JNJ-47965567 for 4 times per week to SOD1G93A mice from pre-onset stage altered disease progression in female individuals while it did not have any effect in males. Our results suggest a partial, yet important, effect of P2X7R in the development and progression of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/fisiopatología , Progresión de la Enfermedad , Actividad Motora , Niacinamida/análogos & derivados , Piperazinas/administración & dosificación , Piperazinas/uso terapéutico , Antagonistas del Receptor Purinérgico P2X/administración & dosificación , Antagonistas del Receptor Purinérgico P2X/uso terapéutico , Receptores Purinérgicos P2X7/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Determinación de Punto Final , Femenino , Humanos , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Niacinamida/administración & dosificación , Niacinamida/química , Niacinamida/farmacología , Niacinamida/uso terapéutico , Piperazinas/química , Piperazinas/farmacología , Antagonistas del Receptor Purinérgico P2X/química , Antagonistas del Receptor Purinérgico P2X/farmacología , Prueba de Desempeño de Rotación con Aceleración Constante , Análisis de Supervivencia , Pérdida de Peso/efectos de los fármacos
11.
Front Neuroanat ; 13: 103, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32038181

RESUMEN

Microglia (MG) are the first cells to react to the abnormal incoming signals that follow an injury of sensory nerves and play a critical role in the development and maintenance of neuropathic pain, a common sequel of nerve injuries. Here we present population data on cell number, soma size, and length of processes of MG in the caudal division of the spinal trigeminal nucleus (Sp5C) in control mice and at the peak of microgliosis (7 days) following unilateral transection of the infraorbital nerve (IoN). The study is performed combining several bias- and assumption-free imaging and stereological approaches with different immunolabeling procedures, with the objective of tackling some hard problems that often hinder proper execution of MG morphometric studies. Our approach may easily be applied to low-density MG populations, but also works, with limited biases, in territories where MG cell bodies and processes form dense meshworks. In controls, and contralaterally to the deafferented side, MG cell body size and shape and branching pattern matched well the descriptions of "resting" or "surveillant" MG described elsewhere, with only moderate intersubject variability. On the superficial laminae of the deafferented side, however, MG displayed on average larger somata and remarkable diversity in shape. The number of cells and the length of MG processes per mm3 increased 5 and 2.5 times, respectively, indicating a net 50% decrease in the mean length of processes per cell. By using specific immunolabeling and cell sorting of vascular macrophages, we found only a negligible fraction of these cells in Sp5C, with no differences between controls and deafferented animals, suggesting that blood-borne monocytes play at most a very limited role in the microgliosis occurring following sensory nerve deafferentation. In sum, here we present reliable morphometric data on MG in control and deafferented trigeminal nuclei using efficient methods that we propose may equally be applied to any morphometric population analysis of these cells under different physiological or pathological conditions.

12.
J Comp Neurol ; 526(18): 3000-3019, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30080243

RESUMEN

The neuromodulation of the greater occipital nerve (GON) has proved effective to treat chronic refractory neurovascular headaches, in particular migraine and cluster headache. Moreover, animal studies have shown convergence of cervical and trigeminal afferents on the same territories of the upper cervical and lower medullary dorsal horn (DH), the so-called trigeminocervical complex (TCC), and recent studies in rat models of migraine and craniofacial neuropathy have shown that GON block or stimulation alter nociceptive processing in TCC. The present study examines in detail the anatomy of GON and its central projections in the rat applying different tracers to the nerve and quantifying its ultrastructure, the ganglion neurons subserving GON, and their innervation territories in the spinal cord and brainstem. With considerable intersubject variability in size, GON contains on average 900 myelinated and 3,300 unmyelinated axons, more than 90% of which emerge from C2 ganglion neurons. Unmyelinated afferents from GON innervates exclusively laminae I-II of the lateral DH, mostly extending along segments C2-3 . Myelinated fibers distribute mainly in laminae I and III-V of the lateral DH between C1 and C6 and, with different terminal patterns, in medial parts of the DH at upper cervical segments, and ventrolateral rostral cuneate, paratrigeminal, and marginal part of the spinal caudal and interpolar nuclei. Sparse projections also appear in other locations nearby. These findings will help to better understand the bases of sensory convergence on spinomedullary systems, a critical pathophysiological factor for pain referral and spread in severe painful craniofacial disorders.


Asunto(s)
Vías Aferentes/citología , Tronco Encefálico/citología , Cuero Cabelludo/inervación , Médula Espinal/citología , Nervios Espinales/citología , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Cráneo/inervación
13.
Eur J Pharmacol ; 796: 115-121, 2017 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-27988286

RESUMEN

The present study was performed to evaluate the Cav1 channel subtypes expressed in human chromaffin cells and the role that these channels play in exocytosis and cell excitability. Here we show that human chromaffin cells obtained from organ donors express Cav1.2 and Cav1.3 subtypes using molecular and pharmacological techniques. Immunocytochemical data demonstrated the presence of Cav1.2 and Cav1.3 subtypes, but not Cav1.1 or Cav1.4. Electrophysiological experiments were conducted to investigate the contribution of Cav1 channels to the exocytotic process and cell excitability. Cav1 channels contribute to the exocytosis of secretory vesicles, evidenced by the block of 3µM nifedipine (36.5±2%) of membrane capacitance increment elicited by 200ms depolarizing pulses. These channels show a minor contribution to the initiation of spontaneous action potential firing, as shown by the 2.5 pA of current at the threshold potential (-34mV), which elicits 10.4mV of potential increment. In addition, we found that only 8% of human chromaffin cells exhibit spontaneous action potentials. These data offer novel information regarding human chromaffin cells and the role of human native Cav1 channels in exocytosis and cell excitability.


Asunto(s)
Potenciales de Acción , Caveolina 1/metabolismo , Células Cromafines/citología , Células Cromafines/metabolismo , Exocitosis , Potenciales de Acción/efectos de los fármacos , Calcio/metabolismo , Células Cromafines/efectos de los fármacos , Exocitosis/efectos de los fármacos , Humanos , Isradipino/farmacología , Nifedipino/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA