Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 301: 113925, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34731961

RESUMEN

Biomass waste generation concerns regulatory authorities to develop novel methods to sustain biotransformation processes. Particularly, lactic acid (LA) is a bulk commodity chemical used in diverse industries and holds a growing global market demand. Recently, lignocellulosic waste biomass is preferred for LA bio-production because of its non-edible and inexpensive nature. However, the information about new pretreatment methods for lignocellulosic feedstock, and novel strains capable to produce LA through fermentation is limited. Therefore, this review highlights the advancement of pretreatments methods of lignocellulosic biomass and biotransformation. Herein, we first briefly explored the main sources of lignocellulosic waste biomass, then we explored their latest advances in pretreatment processes particularly supercritical fluid extraction, and microwave-assisted extraction. Approaches for bioconversion were also analyzed, such as consolidated bioprocessing (CBP), simultaneous saccharification and fermentation (SSF), separate hydrolysis fermentation (SHF), among other alternatives. Also, new trends and approaches were documented, such as metagenomics to find novel strains of microorganisms and the use of recombinant strategies for the creation of new strains. Finally, we developed a holistic and sustainable perspective based on novel microbial ecology tools such as next-gen sequencing, bioinformatics, and metagenomics. All these shed light on the needs to culture powerful microbial isolates, co-cultures, and mixed consortia to improve fermentation processes with the aim of optimizing cultures and feedstock pretreatments.


Asunto(s)
Ácido Láctico , Lignina , Biomasa , Fermentación , Hidrólisis , Lignina/metabolismo
2.
J Environ Manage ; 278(Pt 2): 111534, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33129031

RESUMEN

Pork production has expanded in the world in recent years. This growth has caused a significant increase in waste from this industry, especially of wastewater. Although there has been an increase in wastewater treatment, there is a lack of useful technologies for the treatment of wastewater from the pork industry. Swine farms generate high amounts of organic pollution, with large amounts of nitrogen and phosphorus with final destination into water bodies. Sadly, little attention has been devoted to animal wastes, which are currently treated in simple systems, such as stabilization ponds or just discharged to the environment without previous treatment. This uncontrolled release of swine wastewater is a major cause of eutrophication processes. Among the possible treatments, phyco-remediation seems to be a sustainable and environmentally friendly option of removing compounds from wastewater such as nitrogen, phosphorus, and some metal ions. Several studies have demonstrated the feasibility of treating swine wastewater using different microalgae species. Nevertheless, the practicability of applying this procedure at pilot-scale has not been explored before as an integrated process. This work presents an overview of the technological applications of microalgae for the treatment of wastewater from swine farms and the by-products (pigments, polysaccharides, lipids, proteins) and services of commercial interest (biodiesel, biohydrogen, bioelectricity, biogas) generated during this process. Furthermore, the environmental benefits while applying microalgae technologies are discussed.


Asunto(s)
Microalgas , Aguas Residuales , Animales , Biocombustibles , Biomasa , Nitrógeno , Fósforo , Porcinos
3.
J Environ Manage ; 232: 796-802, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30529867

RESUMEN

In this study, the supercritical CO2-based extraction approach was used from the green technologies to extract Oregano oil (Origanum vulgare L.). A Taguchi experimental design was applied to evaluate the effect of pressure, temperature and ethanol as co-solvent. High yield of oregano oil (13.40%) was obtained at 40 °C, 100 bar and 8 g min-1 of co-solvent flow. Fatty acids profile include α-linolenic, palmitic, oleic and linoleic that contribute to 70.9-76.8% of total fatty acids. Volatile compounds including carvacrol (29.99%), heneicosane (8.21%), nonacosane (11.78%), docosane (7.18%), borneol (4.35%) and thymol (4.51%) were the main compounds identified. Antimicrobial activity assays showed that extracts obtained at 40 °C were highly efficient against S. aureus, E. coli, and C. albicans. Highest antioxidant activities on DPPH and FRAP assays were reached under 8 g min-1 of co-solvent flow (6.08 and 6.89 µmol TE g-1 extract, respectively). On the other hand, antioxidant activity (35.76 µmol TE g-1) on ABTS assay was improved at 40 °C, 100 bar, and 4 g min-1 of co-solvent flow.


Asunto(s)
Origanum , Antioxidantes , Dióxido de Carbono , Escherichia coli , Extractos Vegetales , Staphylococcus aureus
4.
Mar Drugs ; 15(6)2017 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-28604646

RESUMEN

Arthrospira platensis was used to obtain functional extracts through supercritical carbon dioxide extraction (SFE-CO2). Pressure (P), temperature (T), co-solvent (CX), static extraction (SX), dispersant (Di) and dynamic extraction (DX) were evaluated as process parameters through a Plackett-Burman design. The maximum extract yield obtained was 7.48 ± 0.15% w/w. The maximum contents of bioactive metabolites in extracts were 0.69 ± 0.09 µg/g of riboflavin, 5.49 ± 0.10 µg/g of α-tocopherol, 524.46 ± 0.10 µg/g of ß-carotene, 1.44 ± 0.10 µg/g of lutein and 32.11 ± 0.12 mg/g of fatty acids with 39.38% of palmitic acid, 20.63% of linoleic acid and 30.27% of γ-linolenic acid. A. platensis extracts had an antioxidant activity of 76.47 ± 0.71 µg GAE/g by Folin-Ciocalteu assay, 0.52 ± 0.02, 0.40 ± 0.01 and 1.47 ± 0.02 µmol TE/g by DPPH, FRAP and TEAC assays, respectively. These extracts showed antimicrobial activity against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922 and Candida albicans ATCC 10231. Overall, co-solvent was the most significant factor for all measured effects (p < 0.05). Arthrospira platensis represents a sustainable source of bioactive compounds through SFE using the following extraction parameters P: 450 bar, CX: 11 g/min, SX: 15 min, DX: 25 min, T: 60 °C and Di: 35 g.


Asunto(s)
Factores Biológicos/química , Dióxido de Carbono/química , Spirulina/química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Bacterias/efectos de los fármacos , Factores Biológicos/farmacología , Candida albicans/efectos de los fármacos , Ácidos Grasos/química , Ácidos Grasos/farmacología , Ácido Linoleico/química , Ácido Linoleico/farmacología , Luteína/química , Luteína/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Presión , Riboflavina/química , Riboflavina/farmacología , Solventes/química , Temperatura , alfa-Tocoferol/química , alfa-Tocoferol/farmacología , beta Caroteno/química , beta Caroteno/farmacología
5.
Int J Mol Sci ; 17(9)2016 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-27626416

RESUMEN

Supercritical fluid extraction (SFE) is a sustainable technique used for the extraction of lipophilic metabolites such as pigments and fatty acids. Arnica plant is considered a potential candidate material with high antioxidant and antimicrobial activities. Therefore, in this study, a locally available Heterotheca inuloides, also known as Mexican arnica, was analyzed for the extraction of high-value compounds. Based on different pressure (P), temperature (T), and co-solvent (CoS), four treatments (T) were prepared. A maximum 7.13% yield was recovered from T2 (T = 60 °C, P = 10 MPa, CoS = 8 g/min), followed by 6.69% from T4 (T = 60 °C, P = 30 MPa, CoS = 4 g/min). Some bioactive sesquiterpenoids such as 7-hydroxycadalene, caryophyllene and δ-cadinene were identified in the extracts by GC/MS. The fatty acid profile revealed that the main components were palmitic acid (C16:0), followed by linoleic acid (C18:2ω6c), α-linolenic acid (C18:3ω3) and stearic acid (C18:0) differing in percent yield per treatment. Antibacterial activities were determined by the agar diffusion method, indicating that all the treatments exerted strong antibacterial activity against S. aureus, C. albicans, and E. coli strains. The antioxidant capacity of the extracts was also measured by three in vitro assays, DPPH, TEAC and FRAP, using Trolox as a standard. Results showed high antioxidant capacity enabling pharmaceutical applications of Mexican arnica.


Asunto(s)
Arnica/química , Ácidos Grasos/farmacología , Extractos Vegetales/química , Sesquiterpenos/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Candida albicans/efectos de los fármacos , Cromatografía con Fluido Supercrítico/métodos , Escherichia coli/efectos de los fármacos , Ácidos Grasos/química , Extractos Vegetales/farmacología , Sesquiterpenos/química , Staphylococcus aureus/efectos de los fármacos
6.
Int J Nanomedicine ; 13: 5591-5604, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271149

RESUMEN

BACKGROUND: Microalgae produce metabolites with notable potentialities to act as reducing and capping agents for the synthesis of silver nanoparticles (AgNPs) in a process widely recognized as an eco-friendly and cheaper alternative for the generation of nanoparticles (NPs). METHODS: In the present work, AgNPs were synthesized using live Botryococcus braunii cultures. Two biosynthesis routes were explored: (1) intracellular and (2) extracellular at pH levels of 6-9 using 1-5 mM silver nitrate concentrations. RESULTS: The generation of NPs was confirmed via ultraviolet-visible spectroscopy. The morphological characteristics were observed using scanning electron microscopy which revealed that the newly developed AgNPs were mostly spherical in sizes starting from 168 nm. The characteristic peaks in a typical Fourier transform infrared spectroscopy suggested that the exopolysaccharides were the possible reducing and capping agents. The antimicrobial spectrum of the newly developed AgNPs was tested against bacterial strains, both Gram-negative, Gram-positive, and yeast, ie, Escherichia coli (American Type Culture Collection [ATCC] 25922), Pseudomonas aeruginosa (ATCC 27853), Staphylococcus aureus (ATCC 25923), and the yeast Candida albicans (ATCC 10231), respectively. The antimicrobial activity tests showed a stronger inhibition against Gram-negative bacteria. Statistically, the NPs biosynthesized at pH values of 6 and 8 displayed a higher antimicrobial activity. CONCLUSION: Our findings showed that B. braunii is capable of generating AgNPs with antimicrobial potential.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Reactores Biológicos/microbiología , Chlorophyta/química , Nanopartículas del Metal/administración & dosificación , Extractos Vegetales/farmacología , Plata/química , Antibacterianos/química , Bacterias/crecimiento & desarrollo , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química
7.
Bioresour Technol ; 224: 618-629, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27838319

RESUMEN

Bioactivity and functional properties of cyanobacterial extract mostly depends on process of extraction, temperature and solvent used (polar or non-polar). To evaluate these parameters a design of experiment (DOE; using a 2k design) was performed with Arthrospira platensis. Extraction process was optimized through microwave-assisted extraction considering solvent ratio, temperature and time of extraction with polar (PS) and non-polar (NPS). Maximum extract yield obtained was 4.32±0.25% and 5.26±0.11% (w/w) respectively for PS and NPS. Maximum content of bioactive metabolites in PS extracts were thiamine (846.57±14.12µg/g), riboflavin (101.09±1.63µg/g), C-phycocyanin (2.28±0.10µg/g) and A-phycocyanin (4.11±0.03µg/g), while for NPS extracts were α-tocopherol (37.86±0.78µg/g), ß-carotene (123.64±1.45µg/g) and 19.44±0.21mg/g of fatty acids. A. platensis PS extracts showed high antimicrobial activity and PS extracts had antioxidant activity of 0.79±0.12µmolTE/g for FRAP assay, while for NPS extracts 1.03±0.08µmol α-TE/g for FRAP assay.


Asunto(s)
Fraccionamiento Químico/métodos , Microondas , Spirulina/química , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Pruebas de Sensibilidad Microbiana , Fenoles/aislamiento & purificación , Ficocianina/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Solventes/química , Spirulina/crecimiento & desarrollo , Spirulina/metabolismo , beta Caroteno/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA