RESUMEN
Virtually all patients of the rare inflammatory eye disease birdshot chorioretinopathy (BSCR) carry the HLA-A*29:02 allele. BSCR is also associated with endoplasmic reticulum aminopeptidase 2 (ERAP2), an enzyme involved in processing HLA class I ligands, thus implicating the A*29:02 peptidome in this disease. To investigate the relationship between both risk factors we employed label-free quantitative mass spectrometry to characterize the effects of ERAP2 on the A*29:02-bound peptidome. An ERAP2-negative cell line was transduced with lentiviral constructs containing GFP-ERAP2 or GFP alone, and the A*29:02 peptidomes from both transduced cells were compared. A similar analysis was performed with two additional A*29:02-positive, ERAP1-concordant, cell lines expressing or not ERAP2. In both comparisons the presence of ERAP2 affected the following features of the A*29:02 peptidome: 1) Length, with increased amounts of peptides >9-mers, and 2) N-terminal residues, with less ERAP2-susceptible and more hydrophobic ones. The paradoxical effects on peptide length suggest that unproductive binding to ERAP2 might protect some peptides from ERAP1 over-trimming. The influence on N-terminal residues can be explained by a direct effect of ERAP2 on trimming, without ruling out and improved processing in concert with ERAP1. The alterations in the A*29:02 peptidome suggest that the association of ERAP2 with BSCR is through its effects on peptide processing. These differ from those on the ankylosing spondylitis-associated HLA-B*27. Thus, ERAP2 alters the peptidome of distinct HLA molecules as a function of their specific binding preferences, influencing different pathological outcomes in an allele-dependent way.
Asunto(s)
Alelos , Aminopeptidasas/genética , Coriorretinitis/genética , Predisposición Genética a la Enfermedad , Antígenos HLA-A/genética , Péptidos/metabolismo , Proteoma/genética , Aminopeptidasas/química , Aminopeptidasas/metabolismo , Retinocoroidopatía en Perdigonada , Línea Celular , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , LigandosRESUMEN
Thymocyte differentiation is a complex process involving well-defined sequential developmental stages that ultimately result in the generation of mature T-cells. In this study, we analyzed DNA methylation and gene expression profiles at successive human thymus developmental stages. Gain and loss of methylation occurred during thymocyte differentiation, but DNA demethylation was much more frequent than de novo methylation and more strongly correlated with gene expression. These changes took place in CpG-poor regions and were closely associated with T-cell differentiation and TCR function. Up to 88 genes that encode transcriptional regulators, some of whose functions in T-cell development are as yet unknown, were differentially methylated during differentiation. Interestingly, no reversion of accumulated DNA methylation changes was observed as differentiation progressed, except in a very small subset of key genes (RAG1, RAG2, CD8A, PTCRA, etc.), indicating that methylation changes are mostly unique and irreversible events. Our study explores the contribution of DNA methylation to T-cell lymphopoiesis and provides a fine-scale map of differentially methylated regions associated with gene expression changes. These can lay the molecular foundations for a better interpretation of the regulatory networks driving human thymopoiesis.
Asunto(s)
Metilación de ADN , Regulación de la Expresión Génica , Receptores de Antígenos de Linfocitos T alfa-beta/análisis , Linfocitos T/inmunología , Transcripción Genética , Diferenciación Celular/genética , Expresión Génica , Humanos , Linfocitos T/citología , Linfocitos T/metabolismo , Timocitos/citología , Timo/citología , Timo/inmunología , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Notch receptors are master regulators of many aspects of development and tissue renewal in metazoans. Notch1 activation is essential for T-cell specification of bone marrow-derived multipotent progenitors that seed the thymus, and for proliferation and further progression of early thymocytes along the T-cell lineage. Deregulated activation of Notch1 significantly contributes to the generation of T-cell acute lymphoblastic leukaemia (T-ALL). In addition to Notch1 signals, survival and proliferation signals provided by the IL-7 receptor (IL-7R) are also required during thymopoiesis. Our understanding of the molecular mechanisms controlling stage-specific survival and proliferation signals provided by Notch1 and IL-7R has recently been improved by the discovery that the IL-7R is a transcriptional target of Notch1. Thus, Notch1 controls T-cell development, in part by regulating the stage- and lineage-specific expression of IL-7R. The finding that induction of IL-7R expression downstream of Notch1 also occurs in T-ALL highlights the important contribution that deregulated IL-7R expression and function may have in this pathology. Confirming this notion, oncogenic IL7R gain-of-function mutations have recently been identified in childhood T-ALL. Here we discuss the fundamental role of Notch1 and IL-7R signalling pathways in physiological and pathological T-cell development in mice and men, highlighting their close molecular underpinnings.
Asunto(s)
Células Madre Multipotentes/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptor Notch1/metabolismo , Receptores de Interleucina-7/metabolismo , Linfocitos T/metabolismo , Animales , Médula Ósea/metabolismo , Diferenciación Celular , Linaje de la Célula , Regulación de la Expresión Génica , Humanos , Ratones , Células Madre Multipotentes/citología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Receptor Notch1/genética , Receptores de Interleucina-7/genética , Transducción de Señal , Linfocitos T/citologíaRESUMEN
SARS-CoV-2 caused the devastating COVID-19 pandemic, which, to date, has resulted in more than 800 million confirmed cases and 7 million deaths worldwide. The rapid development and distribution (at least in high-income countries) of various vaccines prevented these overwhelming numbers of infections and deaths from being much higher. But would it have been possible to develop a prophylaxis against this pandemic more quickly? Since SARS-CoV-2 belongs to the subgenus sarbecovirus, with its highly homologous SARS-CoV-1, we propose here that while SARS-CoV-2-specific vaccines are being developed, phase II clinical trials of specific SARS-CoV-1 vaccines, which have been in the pipeline since the early 20th century, could have been conducted to test a highly probable cross-protection between SARS-CoV-1 and SARS-CoV-2.
RESUMEN
BACKGROUND: The dismal clinical outcome of relapsed/refractory (R/R) T cell acute lymphoblastic leukemia (T-ALL) highlights the need for innovative targeted therapies. Although chimeric antigen receptor (CAR)-engineered T cells have revolutionized the treatment of B cell malignancies, their clinical implementation in T-ALL is in its infancy. CD1a represents a safe target for cortical T-ALL (coT-ALL) patients, and fratricide-resistant CD1a-directed CAR T cells have been preclinically validated as an immunotherapeutic strategy for R/R coT-ALL. Nonetheless, T-ALL relapses are commonly very aggressive and hyperleukocytic, posing a challenge to recover sufficient non-leukemic effector T cells from leukapheresis in R/R T-ALL patients. METHODS: We carried out a comprehensive study using robust in vitro and in vivo assays comparing the efficacy of engineered T cells either expressing a second-generation CD1a-CAR or secreting CD1a x CD3 T cell-engaging Antibodies (CD1a-STAb). RESULTS: We show that CD1a-T cell engagers bind to cell surface expressed CD1a and CD3 and induce specific T cell activation. Recruitment of bystander T cells endows CD1a-STAbs with an enhanced in vitro cytotoxicity than CD1a-CAR T cells at lower effector:target ratios. CD1a-STAb T cells are as effective as CD1a-CAR T cells in cutting-edge in vivo T-ALL patient-derived xenograft models. CONCLUSIONS: Our data suggest that CD1a-STAb T cells could be an alternative to CD1a-CAR T cells in coT-ALL patients with aggressive and hyperleukocytic relapses with limited numbers of non-leukemic effector T cells.
Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Linfocitos T , Humanos , Inmunoterapia Adoptiva , Anticuerpos , RecurrenciaRESUMEN
Graft-versus-host disease (GVHD) is the main complication after allogeneic hematopoietic stem cell transplantation. We previously unveiled a correlation between proportions of C-C motif chemokine receptor 7 (CCR7)+ T cells in the apheresis and the risk of developing GVHD. We wanted to evaluate in vivo whether apheresis with low proportion of CCR7+ cells or treatment with an anti-human CCR7 monoclonal antibody (mAb) were suitable strategies to prevent or treat acute GVHD in preclinical xenogeneic models. Therapeutic anti-CCR7 mAb was the most effective strategy in both prophylactic and therapeutic settings where antibody drastically reduced in vivo lymphoid organ infiltration of donor CCR7+ T cells, extended lifespan and solved clinical signs. The antibody neutralized in vitro migration of naïve and central memory T cells toward CCR7 ligands and depleted target CCR7+ subsets through complement activation. Both mechanisms of action spared CCR7- subsets, including effector memory and effector memory CD45RA+ T cells which may mediate graft versus leukemia effect and immunity against infections. Accordingly, the numbers of donor CCR7+ T cells in the apheresis were not associated to cytomegalovirus reactivation or the recurrence of the underlying disease. These findings provide a promising new strategy to prevent and treat acute GVHD, a condition where new specific, safety and effective treatment is needed.
Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Receptores CCR7 , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Efecto Injerto vs Leucemia , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Receptores CCR7/efectos de los fármacos , Linfocitos TAsunto(s)
COVID-19 , Animales , Humanos , Inmunoinformática , Pandemias , SARS-CoV-2 , Zoonosis/epidemiologíaRESUMEN
NOTCH1 is a prevalent signaling pathway in T cell acute lymphoblastic leukemia (T-ALL), but crucial NOTCH1 downstream signals and target genes contributing to T-ALL pathogenesis cannot be retrospectively analyzed in patients and thus remain ill defined. This information is clinically relevant, as initiating lesions that lead to cell transformation and leukemia-initiating cell (LIC) activity are promising therapeutic targets against the major hurdle of T-ALL relapse. Here, we describe the generation in vivo of a human T cell leukemia that recapitulates T-ALL in patients, which arises de novo in immunodeficient mice reconstituted with human hematopoietic progenitors ectopically expressing active NOTCH1. This T-ALL model allowed us to identify CD44 as a direct NOTCH1 transcriptional target and to recognize CD44 overexpression as an early hallmark of preleukemic cells that engraft the BM and finally develop a clonal transplantable T-ALL that infiltrates lymphoid organs and brain. Notably, CD44 is shown to support crucial BM niche interactions necessary for LIC activity of human T-ALL xenografts and disease progression, highlighting the importance of the NOTCH1/CD44 axis in T-ALL pathogenesis. The observed therapeutic benefit of anti-CD44 antibody administration in xenotransplanted mice holds great promise for therapeutic purposes against T-ALL relapse.
Asunto(s)
Receptores de Hialuranos/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/etiología , Receptor Notch1/metabolismo , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica , Trasplante de Células Madre Hematopoyéticas , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Mutación , Trasplante de Neoplasias , Leucemia-Linfoma Linfoblástico de Células T Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptor Notch1/genética , Transducción de SeñalRESUMEN
A key unsolved question regarding the developmental origin of conventional and plasmacytoid dendritic cells (cDCs and pDCs, respectively) resident in the steady-state thymus is whether early thymic progenitors (ETPs) could escape T cell fate constraints imposed normally by a Notch-inductive microenvironment and undergo DC development. By modeling DC generation in bulk and clonal cultures, we show here that Jagged1 (JAG1)-mediated Notch signaling allows human ETPs to undertake a myeloid transcriptional program, resulting in GATA2-dependent generation of CD34+ CD123+ progenitors with restricted pDC, cDC, and monocyte potential, whereas Delta-like1 signaling down-regulates GATA2 and impairs myeloid development. Progressive commitment to the DC lineage also occurs intrathymically, as myeloid-primed CD123+ monocyte/DC and common DC progenitors, equivalent to those previously identified in the bone marrow, are resident in the normal human thymus. The identification of a discrete JAG1+ thymic medullary niche enriched for DC-lineage cells expressing Notch receptors further validates the human thymus as a DC-poietic organ, which provides selective microenvironments permissive for DC development.
Asunto(s)
Células Dendríticas/metabolismo , Proteína Jagged-1/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Nicho de Células Madre , Timo/metabolismo , Proteínas de Unión al Calcio , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Subunidad alfa del Receptor de Interleucina-3/metabolismo , Proteína Jagged-1/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Monocitos/citología , Monocitos/metabolismo , Células Mieloides/citología , Células Mieloides/metabolismo , Receptores Notch/genética , Linfocitos T/citología , Linfocitos T/metabolismo , Timo/citologíaRESUMEN
Notch1 activation is essential for T-lineage specification of lymphomyeloid progenitors seeding the thymus. Progression along the T cell lineage further requires cooperative signaling provided by the interleukin 7 receptor (IL-7R), but the molecular mechanisms responsible for the dynamic and lineage-specific regulation of IL-7R during thymopoiesis are unknown. We show that active Notch1 binds to a conserved CSL-binding site in the human IL7R gene promoter and critically regulates IL7R transcription and IL-7R alpha chain (IL-7Ralpha) expression via the CSL-MAML complex. Defective Notch1 signaling selectively impaired IL-7Ralpha expression in T-lineage cells, but not B-lineage cells, and resulted in a compromised expansion of early human developing thymocytes, which was rescued upon ectopic IL-7Ralpha expression. The pathological implications of these findings are demonstrated by the regulation of IL-7Ralpha expression downstream of Notch1 in T cell leukemias. Thus, Notch1 controls early T cell development, in part by regulating the stage- and lineage-specific expression of IL-7Ralpha.
Asunto(s)
Regulación de la Expresión Génica , Leucemia/inmunología , Receptores de Interleucina-7/genética , Linfocitos T/inmunología , Timo/inmunología , Animales , Antígenos CD/inmunología , Sangre Fetal/inmunología , Feto/inmunología , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica , Humanos , Recién Nacido , Leucemia/genética , Ratones , Técnicas de Cultivo de Órganos , Receptor Notch1/inmunología , Timo/crecimiento & desarrolloRESUMEN
Notch signaling is critical for T cell development of multipotent hemopoietic progenitors. Yet, how Notch regulates T cell fate specification during early thymopoiesis remains unclear. In this study, we have identified an early subset of CD34high c-kit+ flt3+ IL-7Ralpha+ cells in the human postnatal thymus, which includes primitive progenitors with combined lymphomyeloid potential. To assess the impact of Notch signaling in early T cell development, we expressed constitutively active Notch1 in such thymic lymphomyeloid precursors (TLMPs), or triggered their endogenous Notch pathway in the OP9-Delta-like1 stroma coculture. Our results show that proliferation vs differentiation is a critical decision influenced by Notch at the TLMP stage. We found that Notch signaling plays a prominent role in inhibiting non-T cell differentiation (i.e., macrophages, dendritic cells, and NK cells) of TLMPs, while sustaining the proliferation of undifferentiated thymocytes with T cell potential in response to unique IL-7 signals. However, Notch activation is not sufficient for inducing T-lineage progression of proliferating progenitors. Rather, stroma-derived signals are concurrently required. Moreover, while ectopic IL-7R expression cannot replace Notch for the maintenance and expansion of undifferentiated thymocytes, Notch signals sustain IL-7R expression in proliferating thymocytes and induce IL-7R up-regulation in a T cell line. Thus, IL-7R and Notch pathways cooperate to synchronize cell proliferation and suppression of non-T lineage choices in primitive intrathymic progenitors, which will be allowed to progress along the T cell pathway only upon interaction with an inductive stromal microenvironment. These data provide insight into a mechanism of Notch-regulated amplification of the intrathymic pool of early human T cell progenitors.
Asunto(s)
Proliferación Celular , Inhibidores de Crecimiento/fisiología , Células Progenitoras Mieloides/citología , Receptor Notch1/fisiología , Receptores de Interleucina-7/fisiología , Linfocitos T/citología , Linfocitos T/inmunología , Timo/citología , Animales , Línea Celular , Células Cultivadas , Preescolar , Humanos , Lactante , Recién Nacido , Ratones , Células Progenitoras Mieloides/inmunología , Células Progenitoras Mieloides/metabolismo , Técnicas de Cultivo de Órganos , Proteínas Proto-Oncogénicas c-kit/biosíntesis , Receptor Notch1/metabolismo , Receptores de Interleucina-7/metabolismo , Transducción de Señal/inmunología , Linfocitos T/metabolismo , Timo/inmunología , Timo/metabolismo , Tirosina Quinasa 3 Similar a fms/biosíntesisRESUMEN
Using a combination of molecular cytogenetic and large-scale expression analysis in human T-cell acute lymphoblastic leukemias (T-ALLs), we identified and characterized a new recurrent chromosomal translocation, targeting the major homeobox gene cluster HOXA and the TCRB locus. Real-time quantitative polymerase chain reaction (RQ-PCR) analysis showed that the expression of the whole HOXA gene cluster was dramatically dysregulated in the HOXA-rearranged cases, and also in MLL and CALM-AF10-related T-ALL cases, strongly suggesting that HOXA genes are oncogenic in these leukemias. Inclusion of HOXA-translocated cases in a general molecular portrait of 92 T-ALLs based on large-scale expression analysis shows that this rearrangement defines a new homogeneous subgroup, which shares common biologic networks with the TLX1- and TLX3-related cases. Because T-ALLs derive from T-cell progenitors, expression profiles of the distinct T-ALL subgroups were analyzed with respect to those of normal human thymic subpopulations. Inappropriate use or perturbation of specific molecular networks involved in thymic differentiation was detected. Moreover, we found a significant association between T-ALL oncogenic subgroups and ectopic expression of a limited set of genes, including several developmental genes, namely HOXA, TLX1, TLX3, NKX3-1, SIX6, and TFAP2C. These data strongly support the view that the abnormal expression of developmental genes, including the prototypical homeobox genes HOXA, is critical in T-ALL oncogenesis.
Asunto(s)
Regulación Leucémica de la Expresión Génica , Proteínas de Homeodominio/genética , Leucemia-Linfoma de Células T del Adulto/genética , Translocación Genética , Adolescente , Adulto , Anciano , Diferenciación Celular/genética , Niño , Preescolar , Femenino , Perfilación de la Expresión Génica , Humanos , Lactante , Masculino , Persona de Mediana Edad , Familia de Multigenes , Linfocitos T/citología , Linfocitos T/fisiologíaRESUMEN
Notch1 activity is essential for the specification of T-lineage fate in hematopoietic progenitors. Once the T-cell lineage is specified, T-cell precursors in the thymus must choose between alphabeta and gammadelta lineages. However, the impact of Notch1 signaling on intrathymic pro-T cells has not been addressed directly. To approach this issue, we used retroviral vectors to express constitutively active Notch1 in human thymocyte progenitors positioned at successive developmental stages, and we followed their differentiation in fetal thymus organ culture (FTOC). Here we show that sustained Notch1 signaling impairs progression to the double-positive (DP) stage and efficiently diverts the earliest thymic progenitors from the main alphabeta T-cell pathway toward development of gammadelta T cells. The impact of Notch1 signaling on skewed gammadelta production decreases progressively along intrathymic maturation and is restricted to precursor stages upstream of the pre-T-cell receptor checkpoint. Close to and beyond that point, Notch1 is not further able to instruct gammadelta cell fate, but promotes an abnormal expansion of alphabeta-committed thymocytes. These results stress the stage-specific impact of Notch1 signaling in intrathymic differentiation and suggest that regulation of Notch1 activity at defined developmental windows is essential to control alphabeta versus gammadelta T-cell development and to avoid deregulated expansion of alphabeta-lineage cells.