Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Soc Rev ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39171560

RESUMEN

Conductive metal-organic frameworks are of current interest in chemical science because of their applications in chemiresistive sensing, electrochemical energy storage, electrocatalysis, etc. Different strategies have been employed to design conductive frameworks. In this review, we discuss the influence of different types of guest species incorporated within the pores or channels of metal-organic frameworks (MOFs) and porous coordination polymers (PCPs) to generate charge transfer pathways and modulate their electrical conductivity. We have classified dopants or guest species into three different categories: (i) metal-based dopants, (ii) molecule and molecular entities and (iii) organic conducting polymers. Different types of metal ions, metal nano-clusters and metal oxides have been used to enhance electrical conductivity in MOFs. Metal ions and metal nano-clusters depend on the hopping process for efficient charge transfer whereas metal-oxides show charge transport through the metal-oxygen pathway. Several types of molecules or molecular entities ranging from neutral TCNQ, I2, and fullerene to ionic methyl viologen, organometallic like nickelcarborane, etc. have been used. In these cases, the charge transfer process varies with the guest species. When organic conducting polymers are the guest, the charge transport occurs through the polymer chains, mostly based on extended π-conjugation. Here we provide a comprehensive and critical review of these strategies to add electrical conductivity to the, in most cases, otherwise insulating MOFs and PCPs. We point out the guest encapsulation process, the geometry and structure of the resulting host-guest complex, the host-guest interactions and the charge transport mechanism for each case. We also present the methods for thin film fabrication of conducting MOFs (both, liquid-phase and gas-phase based methods) and their most relevant applications like electrocatalysis, sensing, charge storage, photoconductivity, photocatalysis,… We end this review with the main obstacles and challenges to be faced and the appealing perspectives of these 21st century materials.

2.
Mol Biol Evol ; 40(5)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37071810

RESUMEN

Horizontal transfer of transposable elements (TEs) is an important mechanism contributing to genetic diversity and innovation. Bats (order Chiroptera) have repeatedly been shown to experience horizontal transfer of TEs at what appears to be a high rate compared with other mammals. We investigated the occurrence of horizontally transferred (HT) DNA transposons involving bats. We found over 200 putative HT elements within bats; 16 transposons were shared across distantly related mammalian clades, and 2 other elements were shared with a fish and two lizard species. Our results indicate that bats are a hotspot for horizontal transfer of DNA transposons. These events broadly coincide with the diversification of several bat clades, supporting the hypothesis that DNA transposon invasions have contributed to genetic diversification of bats.


Asunto(s)
Quirópteros , Elementos Transponibles de ADN , Animales , Elementos Transponibles de ADN/genética , Quirópteros/genética , Transferencia de Gen Horizontal , Evolución Molecular , Mamíferos/genética , Filogenia
3.
Chembiochem ; : e202400401, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981854

RESUMEN

A molecular switch based on the metastable radical anion derived from a substituted heteroaryl quinone is described. Pyrrolyl quinone thiocyanate (PQ 9) showed an interaction with the fluoride anion that was visible to the naked eye and quantified by UV/vis and 1H and 13 C NMR. The metastable quinoid species formed by the interaction with F- ("ON" state) showed a molecular switching effect autocontrolled by the presence of ascorbate ("OFF" state) and back to the "ON" state by an autooxidation process, measured by visible and UV/vis spectroscopy. Due to its out-of-equilibrium properties and the exchange of matter and energy, a dissipative structural behaviour is proposed. Considering its similarity to the mechanism of coenzyme Q in oxidative phosphophorylation, PQ 9 was evaluated on Saccharomyces cerevisiae mitochondrial function for inhibition of complexes II, III and IV, reactive oxygen species (ROS) production, catalase activity and lipid peroxidation. The results showed that PQ 9 inhibited complex III activity as well as the activity of all electron transport chain (ETC) complexes. In addition, PQ 9 reduced ROS production and catalase activity in yeast. The results suggest that PQ 9 may have potential applications as a new microbicidal compound by inducing ETC dysfunction.

4.
Chemistry ; 30(28): e202400410, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38483106

RESUMEN

We have prepared and characterized three coordination polymers formulated as [Dy2(C6O4Cl2)3(fma)6] ⋅ 4.5fma (1) and [Dy2(C6O4X2)3(fma)6] ⋅ 4fma ⋅ 2H2O with X=Br (2) and Cl (3), where fma=formamide and C6O4X2 2-=3,6-disubstituted-2,5-dihydroxy-1,4-benzoquinone dianion with X=Cl (chloranilato) and Br (bromanilato). Compounds 1 and 3 are solvates obtained with slow and fast precipitation methods, respectively. Compounds 2 and 3 are isostructural and only differ in the X group of the anilato ligand. The three compounds present (6,3)-gon two-dimensional hexagonal honey-comb structures. Magnetic measurements indicate that the three compounds show slow relaxation of the magnetization at low temperatures when a continuous magnetic field is applied, although with different relaxation times and energy barriers depending on X and the crystallisation molecules. Compounds 1-3 represent the first examples of anilato-based lattices with formamide and field-induced slow relaxation of the magnetization.

5.
Inorg Chem ; 63(34): 15619-15633, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39116010

RESUMEN

Three cyano-coordinated cobalt porphyrin dimers were synthesized and thoroughly characterized. The X-ray structure of the complexes reveals that cyanide binds in a terminal fashion in both the anti and trans isomers of ethane- and ethylene-bridged cobalt porphyrin dimers, while in the cis ethylene-bridged dimer, cyanides bind in both terminal and bridging modes. The nonconjugated ethane-bridged complex stabilizes exclusively a diamagnetic metal-centered oxidation of type CoIII(por)(CN)2 both in the solid and in solution. In contrast, the complexes with the conjugated ethylene-bridge contain signatures of both paramagnetic ligand-centered oxidation of the type CoII(por•+)(CN)2 and diamagnetic metal-centered oxidation of type CoIII(por)(CN)2 with the metal-centered oxidized species being the major component in the solid state as observed in XPS, while the ligand-centered oxidized species are present in a significant amount in solution. 1H NMR spectrum in solution displays two set of signals corresponding to the simultaneous presence of both the diamagnetic and paramagnetic species. EPR and magnetic investigation reveal that there is a moderate ferromagnetic coupling between the unpaired electrons of the low-spin CoII center and the porphyrin π-cation radical in CoII(por•+)(CN)2 species as well as an antiferromagnetic coupling between the two CoII(por•+) units through the ethylene and CN bridges.

6.
Inorg Chem ; 63(14): 6161-6172, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38526851

RESUMEN

We present a bifunctional heptanuclear cobalt(II)/cobalt(III) molecular complex formulated as [Co7(µ3-OH)4(H2L1)2(HL2)2](NO3)6·6H2O (1) (where H5L1 is 2,2'-(((1E,1'E)-((2-hydroxy-5-methyl-1,3-phenylene)bis(methanylylidene))bis(azanylylidene))bis(propane-1,3-diol)) and H2L2 is 2-amino-1,3-propanediol). Compound 1 has been characterized by single-crystal X-ray diffraction analysis along with other spectral and magnetic measurements. Structural analysis indicates that 1 contains a mixed-valence Co7 cluster where a central Co(II) ion is connected to six different Co centers (four CoIII and two CoII ions) by four µ3-OH groups, giving rise to a planar heptanuclear cluster that resembles a molecular fragment of a layered double hydroxide (LDH). Two triply deprotonated (H2L1)3- ligands form the outer side of the cluster while two singly deprotonated (HL2)- ligands are located at the top and bottom of the central heptanuclear core. Variable temperature magnetic measurements indicate the presence of weak ferromagnetic CoII···CoII interactions (J = 3.53(6) cm-1) within the linear trinuclear CoII cluster. AC susceptibility measurements show that 1 is a field-induced single-molecule magnet (SMM) with τ0 = 8.2(7) × 10-7 s and Ueff = 11.3(4) K. The electrocatalytic hydrogen evolution reaction (HER) activity of 1 in homogeneous phase shows an overpotential of 455 mV, with a Faradaic efficiency of 81% and a TOF of 8.97 × 104 µmol H2 h-1 mol-1.

7.
Inorg Chem ; 63(12): 5423-5431, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38483819

RESUMEN

A series of two-electron-oxidized cobalt porphyrin dimers have been synthesized upon controlled oxidations using halogens. Rather unexpectedly, X-ray structures of two of these complexes contain two structurally different low-spin molecules in the same asymmetric unit of their unit cells: one is the metal-centered oxidized diamagnetic entity of the type CoIII(por), while the other one is the ligand-centered oxidized paramagnetic entity of the type CoII(por•+). Spectroscopic, magnetic, and DFT investigations confirmed the coexistence of the two very different electronic structures both in the solid and solution phases and also revealed a ferromagnetic spin coupling between Co(II) and porphyrin π-cation radicals and a weak antiferromagnetic coupling between the π-cation radicals of two macrocycles via the bridge in the paramagnetic complex.

8.
Inorg Chem ; 63(1): 860-869, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38141027

RESUMEN

In this work, hollow CoS2 particles were prepared by a one-step sulfurization strategy using polyoxometalate-based metal-organic frameworks as the precursor. The morphology and structure of CoS2 have been monitored by scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray powder diffraction. The mechanism for the formation of CoS2 is discussed. The reaction time and sulfur content are found to be important factors that affect the morphology and pure phase formation of CoS2, and a hollow semioctahedral morphology of CoS2 with open voids was obtained when the sulfur source was twice as large as the precursor and the reaction time was 24 h. The CoS2 (24 h) particles show an excellent peroxidase-like activity for the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized (oxTMB) by hydrogen peroxide. The polyoxometalate used as a precursor helps to stabilize oxTMB during catalytic oxidation, forming a stable curve platform for at least 8 min. Additionally, the colorimetric detection of hydroquinone is developed with a low detection limit of 0.42 µM. This research provides a new strategy to design hollow materials with high peroxidase-mimicking activity.

9.
Org Biomol Chem ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39171544

RESUMEN

A synthetic strategy for obtaining a new series of 1,5-disubstituted tetrazole-benzofuran hybrid systems via a one-pot five-component reaction is described. This process involves a Ugi-azide multicomponent reaction coupled to an intramolecular cyclization catalyzed by Pd/Cu, resulting in low to moderate yields from 21 to 67%. This protocol allowed the synthesis of highly substituted benzofurans at the 2-position through an operationally simple process under mild reaction conditions and with high bond forming efficiency due to the formation of six new bonds (two C-C, two C-N, one N-N, and one C-O). Besides, to evaluate the antifungal activity of 1,5-disubstituted tetrazole-benzofurans 9a-n, in vitro studies against Mucor lusitanicus were performed, finding that compound 9b exhibits bioactivity comparable to the commercial antifungal drug Amphotericin B. These results suggest potential for use in controlling mucormycosis infections in animal models, highlighting the importance of these findings given the limited antifungal drug options and high mortality rates associated with this infection.

10.
Angew Chem Int Ed Engl ; 63(36): e202408510, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38881362

RESUMEN

A triskelion-shaped triradical triindeno[1,2-a:1',2'-g : 1'',2''-m]triphenylen-7-yl (1) and its internally fused derivative (2) obtained by oxidative cyclization were prepared in a straightforward synthetic sequence. Both compounds were confirmed to be triradicals and to possess intramolecular antiferromagnetic exchange interactions between spins, displaying a spin-frustrated doublet ground state with doublet-quartet energy gaps of -0.14 kcal/mol for 1 and -0.06 kcal/mol for 2. Despite their open-shell character, they were sufficiently stable to be handled under ambient conditions on a timescale of days. Both compounds could be reversibly reduced to mono-, di-, and trianions and oxidized to 1+ and 22+, with strong NIR absorptions (1800 to over 3200 nm) observed for all open-shell ions.

11.
Metabolomics ; 20(1): 10, 2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38141101

RESUMEN

INTRODUCTION: Regular physical activity and dietary variety are modifiable and influential factors of health outcomes. However, the cumulative effects of these behaviors are not well understood. Metabolomics may have a promising research potential to extend our knowledge and use it in the attempts to find a long-term and sustainable personalized approach in exercise and diet recommendations. OBJECTIVE: The main aim was to investigate the effect of the 12 week very low carbohydrate high fat (VLCHF) diet and high-intensity interval training (HIIT) on lipidomic and metabolomic profiles in individuals with overweight and obesity. METHODS: The participants (N = 91) were randomly allocated to HIIT (N = 22), VLCHF (N = 25), VLCHF + HIIT (N = 25) or control (N = 19) groups for 12 weeks. Fasting plasma samples were collected before the intervention and after 4, 8 and 12 weeks. The samples were then subjected to untargeted lipidomic and metabolomic analyses using reversed phase ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry. RESULTS: The VLCHF diet affected plasma lipids considerably while the effect of HIIT was unremarkable. Already after 4 weeks of intervention substantial changes of plasma lipids were found in both VLCHF diet groups. The changes persisted throughout the entire 12 weeks of the VLCHF diet. Specifically, acyl carnitines, plasmalogens, fatty acyl esters of hydroxy fatty acid, sphingomyelin, ceramides, cholesterol esters, fatty acids and 4-hydroxybutyric were identified as lipid families that increased in the VLCHF diet groups whereas lipid families of triglycerides and glycerophospholipids decreased. Additionally, metabolomic analysis showed a decrease of theobromine. CONCLUSIONS: This study deciphers the specific responses to a VLCHF diet, HIIT and their combination by analysing untargeted lipidomic and metabolomic profile. VLCHF diet caused divergent changes of plasma lipids and other metabolites when compared to the exercise and control group which may contribute to a better understanding of metabolic changes and the appraisal of VLCHF diet benefits and harms. CLINICAL TRIAL REGISTRY NUMBER: NCT03934476, registered 1st May 2019 https://clinicaltrials.gov/ct2/show/NCT03934476?term=NCT03934476&draw=2&rank=1 .


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Lipidómica , Humanos , Dieta Alta en Grasa , Metabolómica , Triglicéridos , Carbohidratos
12.
Molecules ; 28(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38005322

RESUMEN

The anticarcinogenic potential of a series of 1,5-disubstituted tetrazole-1,2,3-triazole hybrids (T-THs) was evaluated in the breast cancer (BC)-derived cell lines MCF-7 (ER+, PR+, and HER2-), CAMA-1 (ER+, PR+/-, and HER2-), SKBR-3 (ER+, PR+, and HER2+), and HCC1954 (ER+, PR+, and HER2+). The T-THs 7f, 7l, and 7g inhibited the proliferation of MCF-7 and CAMA-1, HCC1954, and SKBR-3 cells, respectively. The compounds with stronger effect in terms of migration and invasion inhibition were 7o, 7b, 7n, and 7k for the CAMA-1, MCF-7, HCC1954, and SKBR-3 cells respectively. Interestingly, these T-THs were the compounds with a fluorine present in their structures. To discover a possible target protein, a molecular docking analysis was performed for p53, p38, p58, and JNK1. The T-THs presented a higher affinity for p53, followed by JNK1, p58, and lastly p38. The best-predicted affinity for p53 showed interactions between the T-THs and both the DNA fragment and the protein. These results provide an opportunity for these compounds to be studied as potential drug candidates for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Células MCF-7 , Neoplasias de la Mama/metabolismo , Proteína p53 Supresora de Tumor , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Triazoles/química , Proliferación Celular
13.
Angew Chem Int Ed Engl ; 62(38): e202309238, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37452009

RESUMEN

Diradicaloid helicenes constructed formally by non-benzenoid double π-extension of phenanthrene were synthesized by a common strategy involving double electrophilic benzannulation. Steric effects in the second benzannulation step led to considerable structural diversity among the products, yielding a symmetrical dinor[7]helicene 1 and two isomeric unsymmetrical double helicenes 2 and 3, containing a nor[5]helicene and [4]helicene fragment, respectively, in addition to a common nor[6]helicene motif. Geometries, configurational dynamics, and electronic structure of these helicenes were analyzed using solid-state structures, spectroscopic methods, and computational analyses. The open-shell character of the singlet states of these helicenes increases in the order 3<1<2, with strongly varying diradicaloid indexes and singlet-triplet gaps. Compounds 1-3 displayed narrow optical gaps of 0.79-1.25 eV, resulting in significant absorption in the near infrared (NIR) region. They also exhibit reversible redox chemistry, each of them yielding stable radical cations, radical anions, and dianions, in some cases possessing intense NIR absorptions extending beyond 2500 nm.

14.
Small ; 18(29): e2202087, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35729064

RESUMEN

To develop high-performance supercapacitors, the negative electrode is at present viewed as one of the most challenging tasks for obtaining the next-generation of energy storage devices. Therefore, in this study, a polyoxometalate-based coordination polymer [Zn(itmb)3 H2 O][H2 SiW12 O40 ]·5H2 O (1) is designed and prepared by a simple hydrothermal method for constructing a high-capacity negative electrode. Polymer 1 has two water-assisted proton channels, which are conducive to enhancing the electrical conductivity and storage capacity. Then, MXene Ti3 C2 Tx is chosen to accommodate coordination polymer 1 as the interlayer spacers to improve the conductivity and cycling stability of 1, while preventing the restacking of MXene. Expectedly, the produced composite electrode 1@Ti3 C2 Tx shows an excellent specific capacitance (1480.1 F g-1 at 5 A g-1 ) and high rate performance (a capacity retention of 71.5% from 5 to 20 A g-1 ). Consequently, an asymmetric supercapacitor device is fabricated using 1@Ti3 C2 Tx as the negative electrode and celtuce leaves-derived carbon paper as the positive electrode, which demonstrates ultrahigh energy density of 32.2 Wh kg-1 , and power density 2397.5 W kg-1 , respectively. In addition, the ability to illuminate a red light-emitting diode for several minutes validates its feasibility for practical application.

15.
Bioorg Med Chem Lett ; 63: 128649, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35245665

RESUMEN

Zygomycetes are ubiquitous saprophytes in natural environments which transform organic matter. Some zygomycetes of gender Mucor have attracted interest in health sector. Due to its ability as opportunistic microorganisms infecting immuno-compromised people and to the few available pharmacological treatments, the mucormycosis is receiving worldwide attention. Concerning to the pharmacological treatments, some triazole-based compounds such as fluconazole are extensively used. Nevertheless, we focused in the quinolines since they are broadly used models for the design and development of new synthetic antifungal agents. In this study, the fungistatic activity on M. circinelloides of various 2-aryl-4-aryloxyquinoline-based compounds was discovered, and in some cases, it resulted better than reference compound fluconazole. These quinoline derivatives were synthesized via the Csp2-O bond formation using diaryliodonium(III) salts chemistry. A QSAR study was carried out to quantitatively correlate the chemical structure of the tested compounds with their biological activity. Also, a docking study to identify a plausible action target of our more active quinolines was carried out. The results highlighted an increased activity with the fluorine- and nitro-containing derivatives. In light of the few mucormycosis pharmacological treatments, herein we present some non-described molecules with excellent in vitro activities and potential use in the mucormycosis treatment.


Asunto(s)
Mucormicosis , Quinolinas , Fluconazol , Humanos , Mucor , Mucormicosis/tratamiento farmacológico , Mucormicosis/microbiología , Relación Estructura-Actividad Cuantitativa , Quinolinas/farmacología , Quinolinas/uso terapéutico
16.
Inorg Chem ; 61(30): 11830-11836, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35852958

RESUMEN

In situ molecular transformation under hydrothermal conditions is a feasible method to introduce distinct organic ligands and suppress competitive reactions between different synthons. However, this strategy has not yet been explored for the preparation of polyoxometalate (POM)-encapsulated metal-organic frameworks (MOFs). In this work, we designed and prepared a new compound, [Co2(3,3'-bpy)(3,5'-bpp)(4,3'-bpy)](H2O)3[SiW12O40] (1) (4,3'-bpy = 4,3'-dipyridine, 3,5'-bpp = 3,5'-bis(pyrid-4-yl)pyridine, and 3,3'-bpy = 3,3'-bis(pyrid-4-yl) dipyridine), via an in situ ligand synthesis route. The compound shows a novel POM-encapsulated MOF structure with two pairs of left- and right-handed double helixes. These left- and right-handed helical chains further lead to triangular and rhombus-like channels, respectively. Moreover, the as-synthesized title compound shows superior electrocatalytic activity toward the hydrogen evolution reaction (HER) in 1 M KOH aqueous solution with a low overpotential and Tafel slope of 92 mV and 92.1 mV dec-1, respectively, under a current density of 10 cm-2. Also, the compound exhibits a high activity for the photocatalytic degradation of the dye rhodamine B. The excellent performance of the compound may be attributed to the synergistic effect between W and Co elements and the presence of encapsulated POMs. The title compound proves that it is possible to prepare multifunctional MOFs with POMs and transition metals showing HER activity and dye degradation activity.

17.
Inorg Chem ; 61(47): 18907-18922, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36378825

RESUMEN

The optical, structural, and magnetic properties of iron(II,III) sandwich complexes, Fe(Tp')2n+ (Tp' = bis(3,5-dimethylpyrazolyl)benzotriazolylborate), are described. The intensely colored FeII(Tp')2 (orange) and FeIII(Tp')2+ (purple) show strong MLCT bands. Geometric isomerism for M(Tp')2 is established crystallographically in the racemate of chiral cis-Fe(Tp')2. For the first time, paramagnetic 11B NMR describes solution-phase low-spin (LS, S = 0) to high-spin (HS, S = 2) crossover behavior in Fe(Tp')2. Thermochemical parameters for solution-phase SCO of Fe(Tp')2 demonstrate the endothermic LS to HS conversion and entropic preference of the HS state. Entropy changes for both Fe(Tp')2 isomers are significantly larger than for the majority of iron scorpionate SCO systems. Solid-state magnetic and thermochemical measurements show cis-Fe(Tp')2 to be thermally stable up to 520 K, allowing experimental investigation of a solid-state SCO magnetic hysteresis of over 45 K. A large solution vs solid-state SCO difference was observed: cis-Fe(Tp')2 shows Tc ≈ 270 K (solution) and Tc ≈ 385 K (solid), with the remarkably wide ΔTc ≈ 115 K; trans-Fe(Tp')2 shows Tc ≈ 278 K (solution) and Tc ≈ 372 K (solid). Solid-state Tc values are among the highest seen for iron(II) molecular systems. The large solution/solid ΔTc difference is explained by "anchoring" intermolecular interactions in the solid state that prevent thermal expansion of the LS iron(II) coordination sphere in its transition to the HS state. DFT calculations, validated against LS cis-Fe(Tp')2 crystallography and LS to HS SCO thermochemical parameters, demonstrate the role the benzotriazole rings play in its structural and optical properties. The Lewis basicity of M(Tp')2 is shown with the structural characterization of the air-stable tin(II) adduct [cis-Fe(Tp')2-SnCl2]; tin(II) coordination does not alter the iron(II) spin state. The Tp' chelate adds functionality (asymmetry, chirality, chemical reactivity) to the array of iron SCO materials for potential incorporation into nanoscale magnetic switches and spintronic devices.

18.
Molecules ; 27(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36364102

RESUMEN

In general, food processing and its conditions affect nutrients, bioactive compounds, and sensory characteristics of food products. This research aims to use a non-targeted metabolomics approach based on UPLC-ESI-QTOF-MS to determine how fruit processing can affect the metabolic profile of fruits and, through a comprehensive metabolic analysis, identify possible markers to assess their degree of processing. The present study uses a real case from the food industry to evaluate markers of the processing of strawberry and apple purees industrially elaborated with different processing techniques and conditions. The results from the multivariate analysis revealed that samples were grouped according to the type of processing, evidencing changes in their metabolic profiles and an apparent temperature-dependent effect. These metabolic profiles showed changes according to the relevance of thermal conditions but also according to the exclusively cold treatment, in the case of strawberry puree, and the pressure treatment, in the case of apple puree. After data analysis, seven metabolites were identified and proposed as processing markers: pyroglutamic acid, pteroyl-D-glutamic acid, 2-hydroxy-5-methoxy benzoic acid, and 2-hydroxybenzoic acid ß-d-glucoside in strawberry and di-hydroxycinnamic acid glucuronide, caffeic acid and lysoPE(18:3(9Z,12Z,15Z)/0:0) in apple purees. The use of these markers may potentially help to objectively measure the degree of food processing and help to clarify the controversial narrative on ultra-processed foods.


Asunto(s)
Fragaria , Malus , Fragaria/metabolismo , Manipulación de Alimentos/métodos , Frutas/metabolismo , Metabolómica
19.
Angew Chem Int Ed Engl ; 61(33): e202206680, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35696258

RESUMEN

Four difluorenoheteroles having a central quinoidal core with the heteroring varying as furan, thiophene, its dioxide derivative and pyrrole have shown to be medium character diradicals. Solid-state structures, optical, photophysical, magnetic, and electrochemical properties have been discussed in terms of diradical character, variation of aromatic character and captodative effects (electron affinity). Organic field-effect transistors (OFETs) have been prepared, showing balanced hole and electron mobilities of the order of 10-3  cm2 V-1 s-1 or ambipolar charge transport which is first inferred from their redox amphoterism. Quantum chemical calculations show that the electrical behavior is originated from the medium diradical character which produces similar reorganization energies for hole and electron transports. The vision of a diradical as simultaneously bearing pseudo-hole and pseudo-electron defects might justify the reduced values of reorganization energies for both regimes. Structure-function relationships between diradical and ambipolar electrical behavior are revealed.

20.
J Org Chem ; 86(1): 223-234, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33232142

RESUMEN

Deep eutectic solvents (DESs) have been considered "the organic reaction medium of the century" because they can be used as solvents and active catalysts in chemical reactions. However, experimental and theoretical studies are still needed to provide information on the structures of DESs, the kinetics and thermodynamics properties, the interactions between the DESs and the substrates, the effect of water on the DES supramolecular network and its physicochemical properties, and so forth. This information is very useful to understand the essence of the processes that take place in the catalysis of chemical reactions and, therefore, to help in the design of a DES for a specific reaction and sample. This article shows a systematic study of the impact of DES choline chloride/p-toluenesulfonic acid and DES choline chloride/p-toluenesulfonic acid-water in the aza-Michael addition of arylamines to maleimide to obtain aminopyrrolidine-2,5-dione derivatives. The derivatives are obtained under very mild reaction conditions with good yield. The global reaction is exothermic, spontaneous, permitted by enthalpy, and prohibited for entropy. The calculated potential energy surface shows a reaction mechanism of six steps controlled by enthalpy (except the last step that is controlled by entropy). The water incorporated in the supramolecular DES complex stabilizes the transition states and favors the enthalpy-driven binding. A set of H/D exchange NMR experiments validates the transition state existing in the fourth stage of the mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA