Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Vet Pharmacol Ther ; 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38880898

RESUMEN

Clodronic acid is designated as a controlled medication for competition horses by the International Federation for Equestrian Sports and, according to the International Federation of Horseracing Authorities, clodronic acid is not to be administered to racehorses younger than 3.5 years or within 30 days prior to a race. In this study, 35 horses involved in competition were treated with a single dose of 1.53 mg clodronic acid/kg bodyweight intramuscularly. Plasma samples were obtained before treatment and 10, 20, 30, and 40 days post-administration. Clodronic acid concentrations were measured using a validated method, and the data were fitted using a nonlinear mixed effects model. The estimated depletion half-life of clodronic acid was 10.6 days (inter-individual variability: 17.9%). Age, body weight, sex, disease severity, dose, training days, training, and competition did not significantly impact the depletion half-life. The percentage of horses predicted via simulation to have clodronic acid concentrations below the assay's limit of quantification of 1.0 ng/mL was 93.9% at day 30 and 99.4% at Day 40. This study provides rationale to the equestrian federations and horse racing authorities to reliably establish a detection time for clodronic acid, assisting equine veterinarians in recommending a competition withdrawal time for the horses under their care.

2.
Anal Chem ; 93(47): 15590-15596, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34791882

RESUMEN

Synthetic androgenic anabolic steroids (AAS) are banned compounds and considered as major threats by both racing and sports international authorities. Hence, doping control laboratories are continually looking into analytical improvements to increase their detection capabilities, notably by means of emerging technologies. To enhance analytical performances for the detection of synthetic AAS such as stanozolol, specific chromatographic procedures have been developed using recent quaternary liquid chromatography technology originally designed for high-throughput standardized proteomics connected to mass spectrometry. Applying the newly designed elution procedures described in this paper to the analyses of stanozolol and its metabolites in complex matrixes revealed improved sensitivity compared to previously described high-throughput methods. Indeed, we report the consistent and reliable detection of 16ß-hydroxy-stanozolol down to 10 pg/mL in equine urine and being detectable up-to 3 months after a microdosing administration. Furthermore, a five months long elimination of stanozolol and its metabolites could be monitored on horse mane sections after a single dose administration. Our work highlights novel solutions to detect AAS with improved sensitivity. The application of such developments constitutes new landmarks for doping control laboratories and could be extended to other targeted compounds in residue analysis, toxicology, and metabolomics. Based on this work, the developed chromatographic method is now freely available within the Evosep Plus program.


Asunto(s)
Anabolizantes , Doping en los Deportes , Animales , Caballos , Esteroides , Detección de Abuso de Sustancias , Espectrometría de Masas en Tándem , Congéneres de la Testosterona
3.
Anal Chem ; 92(19): 13155-13162, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32924440

RESUMEN

With recent advances in analytical chemistry, liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS) has become an essential tool for metabolite discovery and detection. Even if most of the common drug transformations have already been extensively described, manual search of drug metabolites in LC-HRMS/MS datasets is still a common practice in toxicology laboratories, complicating metabolite discovery. Furthermore, the availability of free open-source software for metabolite discovery is still limited. In this article, we present MetIDfyR, an open-source and cross-platform R package for in silico drug phase I/II biotransformation prediction and mass-spectrometric data mining. MetIDfyR has proven its efficacy for advanced metabolite identification in semi-complex and complex mixtures in in vitro or in vivo drug studies and is freely available at github.com/agnesblch/MetIDfyR.


Asunto(s)
Preparaciones Farmacéuticas/análisis , Bibliotecas de Moléculas Pequeñas/análisis , Quimioinformática , Cromatografía Liquida , Estructura Molecular , Preparaciones Farmacéuticas/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Espectrometría de Masas en Tándem
4.
Anal Bioanal Chem ; 407(15): 4385-96, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25595834

RESUMEN

Doping control is a main priority for regulatory bodies of both the horse racing industry and the equestrian sports. Urine and blood samples are screened for the presence of hundreds of forbidden substances including anabolic-androgenic steroids (AASs). Based on the suspected endogenous origin of some AASs, with ß-boldenone as the most illicit candidate, this study aimed to improve the knowledge of the naturally present AAS in horse urine. To this extent, a novel ultra high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated according to the Association of Official Racing Chemists (AORC) and European Commission (EC) guidelines, proving the power of this new method. Low limits of detection (0.2 ng/mL), good reproducibility (percentage of standard deviation (%RSD) < 10%), high recovery (94.6 to 117.1%), selectivity and specificity, and a linear response (confirmed with R(2) > 0.99 and lack-of-fit analysis) were obtained for all included AASs. With this method, urine samples of 105 guaranteed untreated horses (47 geldings, 53 mares, and 5 stallions serving as a control) were screened for ß-boldenone and five related natural steroids: androstadienedione (ADD), androstenedione (AED), alpha-testosterone (αT), beta-testosterone (ßT), and progesterone (P). Progesterone, ß-testosterone, and α-testosterone were detected in more than half of the horses at low concentrations (<2 ng/mL). Occasionally, not only testosterone and progesterone but also low concentrations of AED, ADD, and boldenone (Bol) were found (0.5-5 ng/mL). Graphical Abstract A sensitive, new and fully validated UHPLC-MS/MS method has been developed that is able to quantify low levels of anabolic-androgenic steroids naturally present in urine of untreated horses (mares and geldings).


Asunto(s)
Anabolizantes/orina , Andrógenos/orina , Cromatografía Líquida de Alta Presión/métodos , Caballos/orina , Esteroides/orina , Espectrometría de Masas en Tándem/métodos , Testosterona/análogos & derivados , Animales , Doping en los Deportes , Femenino , Límite de Detección , Masculino , Reproducibilidad de los Resultados , Detección de Abuso de Sustancias/métodos , Testosterona/orina
5.
Drug Test Anal ; 16(2): 199-209, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37337992

RESUMEN

Many innovative biotherapeutics have been marketed in the last decade. Monoclonal antibodies (mAbs) and Fc-fusion proteins (Fc-proteins) have been developed for the treatment of diverse diseases (cancer, autoimmune diseases, and inflammatory disorders) and now represent an important part of targeted therapies. However, the ready availability of such biomolecules, sometimes characterized by their anabolic, anti-inflammatory, or erythropoiesis-stimulating properties, raises concerns about their potential misuse as performance enhancers for human and animal athletes. In equine doping control laboratories, a method has been reported to detect the administration of a specific human biotherapeutic in equine plasma; but no high-throughput method has been described for the screening without any a priori knowledge of human or murine biotherapeutic. In this context, a new broad-spectrum screening method involving UHPLC-HRMS/MS has been developed for the untargeted analysis of murine or human mAbs and related macromolecules in equine plasma. This approach, consisting of a "pellet digestion" strategy performed in a 96-well plate, demonstrates reliable performances at low concentrations (pmol/mL range) with high-throughput capability (≈100 samples/day). Targeting species-specific proteotypic peptides located within the constant parts of mAbs enables the "universal" detection of human biotherapeutics only by monitoring 10 peptides. As proof of principle, this strategy successfully detected different biotherapeutics in spiked plasma samples, and allowed, for the first time, the detection of a human mAb up to 10 days after a 0.12 mg/kg administration to a horse. This development will expand the analytical capabilities of horse doping control laboratories towards protein-based biotherapeutics with adequate sensitivity, throughput, and cost-effectiveness.


Asunto(s)
Anticuerpos Monoclonales , Doping en los Deportes , Caballos , Animales , Humanos , Ratones , Cromatografía Líquida de Alta Presión/métodos , Doping en los Deportes/prevención & control , Péptidos
6.
Anal Chem ; 85(10): 5219-25, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23581651

RESUMEN

Cobra venom (Naja kaouthia) contains a toxin called α-cobratoxin (α-Cbtx). This toxin is a natural protein containing 71 amino acids (MW 7821 Da) with a reported analgesic potency greater than morphine. In 2007, in USA, this substance was found in the barns of a thoroughbred trainer and since then till date, the lack of a detection of this molecule has remained a recurring problem for the horseracing industry worldwide. To solve this problem, the first method for the detection of α-cobratoxin in equine plasma has now been developed. Plasma sample (3 mL) was treated with ammonium sulfate at the isoelectric point of α-Cbtx, and the pellet was dissolved in a phosphate buffer and mixed with methanol for precipitation. The supernatant was then concentrated prior to its extraction on WCX SPE cartridges. The eluate was concentrated with two consecutive filtration steps before the trypsin digestion. The samples were analyzed using a LC-MS/MS Q Exactive instrument at 70,000 resolution on the product ions of the doubly charged precursor of the target peptide ((24)TWCDAFCSIR(33)). The method was validated (n = 18) at 5 µg/L (640 pmol/L) according to the Association of Official Racing Chemists (AORC) requirements. The lower limit of detection was 1 µg/L (130 pmol/L). The present method has made it possible for us to confirm the presence of α-Cbtx in a horse plasma sample 24 h post the administration of α-Cbtx. Thus, the present method provides the first sensitive, specific, and reliable analytical method to confirm the presence of α-Cbtx in equine plasma.


Asunto(s)
Analgésicos/sangre , Análisis Químico de la Sangre/métodos , Proteínas Neurotóxicas de Elápidos/sangre , Doping en los Deportes/prevención & control , Caballos , Secuencia de Aminoácidos , Analgésicos/química , Analgésicos/aislamiento & purificación , Analgésicos/metabolismo , Métodos Analíticos de la Preparación de la Muestra , Animales , Cromatografía Liquida , Proteínas Neurotóxicas de Elápidos/química , Proteínas Neurotóxicas de Elápidos/aislamiento & purificación , Proteínas Neurotóxicas de Elápidos/metabolismo , Datos de Secuencia Molecular , Proteolisis , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem , Tripsina/metabolismo
7.
Drug Test Anal ; 15(4): 458-464, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36482504

RESUMEN

Nowadays, numerous websites attempt to commercialize over the internet various products, regardless of the lack of approval by the EMA or the FDA either for human or veterinary use. These products are often produced after aborted drug development due to insufficient or deleterious biological effects, synthesized based on natural products, or only based on scientific literature. However, the administration of such products is dangerous, considering the lack of official control over the production of these substances and the absence of approval by health authorities. In this short communication, we provide an extensive analysis of three misbranded and adulterated products sold over the internet named TB500, TB1000, and SGF1000. We confirm that the content of TB500/TB1000 products is not systematically consistent with it's former descriptions, but also that SGF1000 is mainly composed of sheep extracellular matrix (ECM) and blood proteins, and the signal corresponding to the purported growth promoters is excessively diluted.


Asunto(s)
Aprobación de Drogas , Estados Unidos , Humanos , Animales , Ovinos , Preparaciones Farmacéuticas , United States Food and Drug Administration
8.
Analyst ; 137(10): 2445-53, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22454833

RESUMEN

Recombinant human erythropoietin (rHuEPO) is a 30-34 kDa glycoprotein banned by the racing authorities. For some years this molecule has been detected in race horses in USA and in Europe, and even in racing camels. Although direct methods to differentiate horse endogenous EPO and rHuEPO have been developed either by LC-MS/MS or by isoelectric focusing (IEF) with double-blotting, the short confirmation time of such prohibited hormone in plasma remains a problem for horseracing doping control laboratories. In order to improve the rHuEPOs confirmation process in horse plasma or urine in terms of reliability and delay, a small anti-EPO monolith membrane contained in a disposable column (anti-EPO monolith column) has been successfully used and validated (n = 10). This new sample preparation, combined with LC-FAIMS-MS/MS, has been performed on plasma and urine samples collected from one horse which received an Eprex® treatment during six consecutive days and a second one with a single injection of Aranesp®. This inventive technology allowed the possibility to confirm the presence of rHuEPO within one day with a limit of detection validated for both urine and plasma at 250 pg mL(-1) by means of a disposable, ready to use immunoaffinity column. The lower limit of detection (LLOD) obtained for each matrix was 100 pg mL(-1). These results provide an important improvement for rHuEPO doping control in horseracing especially the possibility to confirm these banned molecules in both matrices, urine and plasma, with a confidence of two specific target peptides.


Asunto(s)
Cromatografía Líquida de Alta Presión , Eritropoyetina/análogos & derivados , Espectrometría de Masas en Tándem , Animales , Darbepoetina alfa , Doping en los Deportes , Epoetina alfa , Eritropoyetina/análisis , Eritropoyetina/sangre , Eritropoyetina/orina , Caballos , Focalización Isoeléctrica , Proteínas Recombinantes/análisis , Proteínas Recombinantes/sangre , Proteínas Recombinantes/orina , Tripsina/metabolismo
9.
Anal Bioanal Chem ; 403(6): 1619-28, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22526650

RESUMEN

Doping of horses with recombinant human erythropoietin (rHuEPO) to illegally enhance their endurance capacity in horseracing has been reported during the last years. This leads to increased blood viscosity which can result in sudden death and is of concern for the horse welfare. Additionally, the horse can start production of rHuEPO antibodies, which cross-reacts with endogenous equine EPO and can lead to severe anaemia and even death. In this study, a novel micro-chromatographic method, EPO WGA MAIIA, has been tested for the capability in plasma and urine samples to detect administration of erythropoiesis-stimulating agents, like the rHuEPO glycoprotein varieties Eprex and Aranesp, to horses. After administration of 40 IU Eprex kg(-1) day(-1) to seven horses during 6 days, the presence of Eprex in horse plasma was detected up to 2-5 days after last injection. In urine samples collected from two horses, Eprex was detected up to 3 days. A single injection of Aranesp (0.39 µg/kg) was detected up to 9 days in plasma and up to 8 days, the last day of testing, in the urine sample. The LC-FAIMS-MS/MS system, with 1 day reporting time, confirmed the presence of Eprex up to 1 day after last injection for six out of seven horses and the presence of Aranesp up to 5 days after last injection in plasma samples. The MAIIA system showed to be a promising tool with high sensitivity and extremely short reporting time (1 h).


Asunto(s)
Eritropoyetina/análisis , Caballos , Animales , Cromatografía de Afinidad , Reacciones Cruzadas , Eritropoyetina/administración & dosificación , Eritropoyetina/inmunología , Humanos , Técnicas para Inmunoenzimas , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/análisis , Proteínas Recombinantes/inmunología , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
10.
Drug Test Anal ; 14(5): 953-962, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33860991

RESUMEN

Short half-life doping substances are, quickly eliminated and therefore difficult to control with traditional analytical chemistry methods. Indirect methods targeting biomarkers constitute an alternative to extend detection time frames in doping control analyses. Gene expression analysis (i.e., transcriptomics) has already shown interesting results in both humans and equines for erythropoietin (EPO), growth hormone (GH), and anabolic androgenic steroid (AAS) misuses. In humans, circulating cell-free microRNAs in plasma were described as new potential biomarkers for control of major doping agent (MDA) abuses. The development of a quantitative polymerase chain reaction (qPCR) method allowing the detection of circulating miRNAs was carried out on equine plasma collected on different type of tubes (EDTA, lithium-heparin [LiHep]). Although analyzing plasma collected in EDTA tubes is a standard method in molecular biology, analyzing plasma collected in LiHep tubes is challenging, as heparin is a reverse transcription (RT) and a PCR inhibitor. Different strategies were considered, and attention was paid on both miRNAs extraction quality and detection sensitivity. The detection of endogenous circulating miRNAs was performed and compared between the different types of tubes. In parallel, homologs of human miRNAs characterized as potential biomarkers of doping were sought in equine databases. The miRNA eca-miR-144, described as potential erythropoiesis stimulating agents (ESAs) administration candidate biomarker was retained and assessed in equine post-administration samples. The results about the qPCR method development and optimization are exposed as well as the equine miRNAs detection. To our knowledge, this work is the first study and the proof of concept of circulating miRNAs detection in plasma dedicated to equine doping control.


Asunto(s)
Hematínicos , MicroARNs , Animales , Biomarcadores , Ácido Edético , Heparina , Caballos/genética , Reacción en Cadena de la Polimerasa , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
11.
Drug Test Anal ; 14(5): 864-878, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35001538

RESUMEN

In order to overcome the challenge associated with the screening of Anabolic-Androgenic Steroids abuses in animal competitions, a non-targeted liquid chromatography coupled to high resolution mass spectrometry based metabolomics approach was implemented on equine urine samples to highlight potential biomarkers associated with the administration of such compounds, using testosterone esters as model steroids. A statistical model relying on four potential biomarkers intensity could be defined to predict the status of the samples. With a routine application perspective, the monitoring of the highlighted potential biomarkers was first transferred into high-throughput liquid chromatography-selected reaction monitoring (LC-SRM). The model's performances and robustness of the approach were preserved and providing a first demonstration of metabolomics-based biomarkers integration within a targeted workflow using common benchtop MS instrumentation. In addition, with a view to the widespread implementation of such biomarker-based tools, we have transferred the method to a second laboratory with similar instrumentation. This proof of concept allows the development and application of biomarker-based strategies to meet current doping control needs.


Asunto(s)
Doping en los Deportes , Testosterona , Animales , Biomarcadores/orina , Caballos , Laboratorios , Metabolómica/métodos , Esteroides/análisis , Congéneres de la Testosterona
12.
Drug Test Anal ; 14(2): 252-261, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34634175

RESUMEN

Ciclesonide (CIC) is the first inhaled highly potent corticosteroid that does not cause any cortisol suppression. It has been developed for the treatment of asthma in human and more recently in equine. CIC is the active compound of Aservo® EquiHaler® (Boehringer Ingelheim Vetmedica GmbH), the pre-filled inhaler generating a medicated mist based on Soft Mist™ technology. This prodrug is rapidly converted to desisobutyryl-ciclesonide (des-CIC), the main pharmacologically active compound. Due to its anti-inflammatory properties, CIC is prohibited for use in horse competitions. To set up an appropriate control, the determination of detection times and screening limits are required. Therefore, a highly sensitive analytical method based on supported liquid extraction (SLE) combined with liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS) was developed to detect CIC and its active metabolite des-CIC in plasma. The lower limit of detection of CIC and des-CIC was approximately 1 pg/ml in plasma. After a pilot study conducted on a single horse at the recommended dose (eight actuations twice daily corresponding to 5.5 mg/day for the first 5 days, followed by 12 actuations once daily corresponding to 4.1 mg/day in the last 5 days), the same protocol was applied in the main study using six horses. In all horses, CIC and des-CIC levels were less than 5 and 10 pg/ml, respectively, at 36 h after the end of the administration. The outcome of this risk assessment study should be useful to draw any recommendations for horse competitions.


Asunto(s)
Pregnenodionas , Profármacos , Animales , Cromatografía Liquida/métodos , Caballos , Proyectos Piloto , Pregnenodionas/análisis
13.
J Sep Sci ; 34(24): 3493-501, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21710695

RESUMEN

Growth hormone (GH) is a polypeptide suspected of being used in horse racing to speed up physical performances. Despite scientific advances in the recent years, the control of its administration remains difficult. In order to improve it, a metabolomics study through LC-high resolution mass spectrometry measurements was recently initiated to assess the metabolic perturbations caused by recombinant equine growth hormone administration. Few tens of ions not identified structurally were highlighted as compounds responsible for the modification of metabolic profiling observed in treated animals. This previous work was based on the use of Uptisphere Strategy NEC as the chromatographic column. In parallel, more and more metabolomics studies showed the interest of the use of new chromatographic supports such as hydrophilic interaction chromatography for the analysis of polar compounds. It is in this context that an investigation was conducted on Uptisphere HDO and Luna hydrophilic interaction chromatography stationary phases to generate and process urinary metabolomics fingerprints, which could allow to establish a comparison with Uptisphere Strategy NEC. The chromatographic column the most adapted for the detection of new biomarkers of GH administration has been used to set up a relevant statistical model based on the analysis of more than hundred biological samples.


Asunto(s)
Doping en los Deportes/prevención & control , Hormona de Crecimiento Humana/análisis , Hormona de Crecimiento Humana/metabolismo , Metabolómica/métodos , Animales , Cromatografía Líquida de Alta Presión , Femenino , Caballos , Masculino , Espectrometría de Masas , Proteínas Recombinantes/análisis , Proteínas Recombinantes/metabolismo
14.
Drug Test Anal ; 13(8): 1527-1534, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33870655

RESUMEN

Clodronate is a non-nitrogen-containing bisphosphonate drug approved in equine veterinary medicine. Clodronate is prohibited for use in competition horses; therefore, to set up an appropriate control, detection times and screening limits are required. The quantitative method in plasma consisted of addition of chloromethylene diphosphonic acid as internal standard. Automated sample preparation comprised a solid phase extraction with weak anion exchange properties on microplate. After methylation of the residue with trimethyl orthoacetate, analysis was conducted by high-performance liquid chromatography-tandem mass spectrometry. Using a weighting factor of 1/(concentration)2 , good linearity was observed in the range of 1 to 500 ng/ml, with low limits of detection and quantification of 0.5 and 1 ng/ml, respectively. Precision and accuracy determined at four concentrations were satisfactory, with an error percentage less than 15%. Absence of carry-over and good stability of clodronic acid in plasma after a long-term storage at -20°C were verified. The method was successfully applied to the quantification of clodronic acid in plasma samples from horses administered with a single intramuscular administration of Osphos® at a mean dose of 1.43 ± 0.07 mg/kg. The observed detection time will be verified in a clinical population study conducted in diseased horses.


Asunto(s)
Analgésicos no Narcóticos/sangre , Ácido Clodrónico/sangre , Caballos/sangre , Animales , Automatización , Cromatografía Líquida de Alta Presión , Doping en los Deportes , Inyecciones Intramusculares , Masculino , Reproducibilidad de los Resultados , Extracción en Fase Sólida , Espectrometría de Masas en Tándem
15.
Drug Test Anal ; 13(6): 1191-1202, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33547737

RESUMEN

According to international sport institutions, the use of peroxisome proliferator activated receptor (PPAR)-δ agonists is forbidden at any time in athlete career due to their capabilities to increase physical and endurance performances. The (PPAR)-δ agonist GW501516 is prohibited for sale but is easily available on internet and can be used by cheaters. In the context of doping control, urine is the preferred matrix because of the non-invasive nature of sampling and providing broader exposure detection times to forbidden molecules but often not detected under its native form due to the organism's metabolism. Even if urinary metabolism of G501516 has been extensively studied in human subjects, knowledge on GW501516 metabolism in horses remains limited. To fight against doping practices in horses' races, GW501516 metabolism has to be studied in horse urine to identify and characterize the most relevant target metabolites to ensure an efficient doping control. In this article, in vitro and in vivo experiments have been conducted using horse S9 liver microsome fractions and horse oral administration route, respectively. These investigations determined that the detection of GW501516 must be performed in urine on its metabolites because the parent molecule was extremely metabolized. To maximize analytical method sensitivity, the extraction conditions have been optimized. In accordance with these results, a qualitative analytical method was validated to detect the abuse of GW501516 based on its most relevant metabolites in urine. This work enabled the Laboratoire des Courses Hippiques (LCH) to highlight two cases of illicit administration of this forbidden molecule in post-race samples.


Asunto(s)
Doping en los Deportes/prevención & control , Detección de Abuso de Sustancias/métodos , Tiazoles/análisis , Administración Oral , Animales , Femenino , Caballos , Masculino , Microsomas Hepáticos/metabolismo , PPAR delta/agonistas , Tiazoles/metabolismo , Tiazoles/orina
16.
Drug Test Anal ; 12(6): 763-770, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31984676

RESUMEN

Recombinant human erythropoietin (rHuEPO) belongs to the therapeutic class of erythropoiesis stimulating agents (ESAs) due to its implication in the creation pathway of red blood cells and thus enhancement of oxygenation. Because of this bioactivity, rHuEPO has been considered as a major doping agent in sports competitions for decades. Over the years, doping control laboratories designed several analytical strategies applied to human and animal samples to highlight any misuse. Even though multiple analytical approaches have been reported, none has yet been dedicated to racing camels. Here, we describe an analytical strategy to test camel plasma samples at screening using an ELISA assay and a targeted nano-liquid chromatography-high-resolution tandem mass spectrometry for confirmatory analysis. The method was validated and has been successfully applied to post-race samples, allowing the detection of a positive case of rHuEPO administration.


Asunto(s)
Camelus/metabolismo , Doping en los Deportes/métodos , Eritropoyetina/análisis , Detección de Abuso de Sustancias/métodos , Secuencia de Aminoácidos , Animales , Cromatografía Líquida de Alta Presión , Eritropoyetina/química , Humanos , Espectrometría de Masas , Proteínas Recombinantes/análisis , Reproducibilidad de los Resultados , Deportes
17.
Drug Test Anal ; 12(10): 1452-1461, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32615643

RESUMEN

Bisphosphonates are prohibited drugs according to Article 6 of the International Agreement on Breeding, Racing and Wagering of the International Federation of Horseracing Authorities (IFHA) and the International Equestrian Federation (FEI). These compounds are used for the treatment of lameness, navicular and bone diseases in horses and are divided into two groups: non-nitrogen-containing bisphosphonate drugs (e.g. clodronic acid) and nitrogen-containing bisphosphonate drugs (e.g. zoledronic acid). Their hydrophilic properties and the high affinity for the bone matrix make the control of their use quite difficult. Current analytical strategies to detect such compounds often rely on a solid phase extraction (SPE) followed by detection by means of UHPLC-MS/MS after methylation with chemical reagents. To improve the analysis throughput and to eliminate the need for chemical derivatization, an innovative 96-well SPE followed by ion chromatography-mass spectrometry was developed. Analyses are conducted on an ICS-6000 HPIC system coupled to a TSQ Altis™ (Thermo Scientific™). The use of a 96-well SPE allowed 5-fold sample increase and a 6-fold throughput improvement. While preliminary results conducted on horse plasma exhibited similar performances to the method for the detection of non-nitrogen-containing bisphosphonates, the analytical performances of nitrogen-containing bisphosphonates were greatly improved.


Asunto(s)
Conservadores de la Densidad Ósea/sangre , Difosfonatos/sangre , Caballos/sangre , Animales , Cromatografía Líquida de Alta Presión , Doping en los Deportes , Extracción en Fase Sólida , Espectrometría de Masas en Tándem
18.
Anal Chem ; 80(21): 8340-7, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18816143

RESUMEN

Equine growth hormone (eGH) has been available since 1998 as an approved drug (EquiGen-5, Bresagen) containing recombinant eGH (reGH). It is suspected of being illegally administered to racehorses in order to improve physical performance and to speed-up wound healing. Thus it may be considered a doping agent which would require a sensitive and reliable method of identification and confirmation in order to regulate its use in racehorses. reGH differs from the native eGH by an additional methionine at the N-terminal (met-eGH) and has never been unambiguously detected in any type of biological matrix at trace concentrations (1-10 microg/L). A plasma sample (4 mL) was treated with ammonium sulfate at the reGH isoelectric point and the pellet was purified by solid-phase extraction. Specific peptides were generated by trypsin digestion and analyzed by LC-MS/MS. The detection limit was 1 microg/L. The method was validated according to European Union regulation (DEC/2002/657/EC) and the Association of Official Racing Chemists (AORC) requirements. Furthermore, it was successfully applied to determining the plasma concentrations of reGH with time using linear ion trap mass analyzer. The presence of this prohibited hormone (reGH) was also successfully detected by triple quadrupole mass spectrometry up to 48 h postadministration of reGH to a horse. The present LC-MS/MS method is the first with adequate sensitivity and specificity for detection of reGH, rbGH, and endogenous eGH. Hence, an efficient analytical tool is proposed as a means to fulfilling the regulation of reGH abuse in the horse racing industry.


Asunto(s)
Cromatografía Liquida/métodos , Hormona del Crecimiento/sangre , Hormona del Crecimiento/química , Caballos/sangre , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Animales , Datos de Secuencia Molecular , Péptidos/sangre , Péptidos/química , Extracción en Fase Sólida
19.
Anal Bioanal Chem ; 390(7): 1843-52, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18274736

RESUMEN

The insulin-like-growth factor (IGF-I) peptide is considered to be the main indirect marker for growth hormone administration (GH) in a horse. Further to a previous investigation on measurement of IGF-I in plasma samples by mass spectrometry, this study focuses on quantitative and qualitative analysis of intact IGF-I in horse plasma. First, protein-transposing software has been developed for IGF-I to facilitate its quantification by HPLC-electrospray-ion-trap mass spectrometry. Second, product-ion scan experiments on IGF-I have been conducted on standard samples, non-fortified equine plasma samples, fortified plasma samples, and equine GH post-administration samples. This "top-down" approach method enables characterisation of fragment ions corresponding to the carboxy terminal end, which can be useful for the confirmation of the presence of IGF-I in plasma samples.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Cromatografía Liquida/métodos , Caballos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
J Chromatogr Sci ; 46(2): 174-83, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18366880

RESUMEN

Solid-phase extraction cartridges among those usually used for screening in horse doping analyses are tested to optimize the extraction of harpagoside (HS), harpagide (HG), and 8-para-coumaroyl harpagide (8PCHG) from plasma and urine. Extracts are analyzed by liquid chromatography coupled with multi-step tandem mass spectrometry. The extraction process retained for plasma applies BondElut PPL cartridges and provides extraction recoveries between 91% and 93%, with RSD values between 8 and 13% at 0.5 ng/mL. Two different procedures are needed to extract analytes from urine. HS and 8PCHG are extracted using AbsElut Nexus cartridges, with recoveries of 85% and 77%, respectively (RSD between 7% and 19%). The extraction of HG involves the use of two cartridges: BondElut PPL and BondElut C18 HF, with recovery of 75% and RSD between 14% and 19%. The applicability of the extraction methods is determined on authentic equine plasma and urine samples after harpagophytum or harpagoside administration.


Asunto(s)
Glicósidos/análisis , Caballos/sangre , Caballos/orina , Piranos/análisis , Extracción en Fase Sólida/métodos , Animales , Cromatografía Liquida/métodos , Glicósidos/sangre , Glicósidos/orina , Concentración de Iones de Hidrógeno , Glicósidos Iridoides , Piranos/sangre , Piranos/orina , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA