Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Expert Rev Proteomics ; 21(4): 181-203, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38536015

RESUMEN

INTRODUCTION: Male infertility is a major public health concern globally. Proteomics has revolutionized our comprehension of male fertility by identifying potential infertility biomarkers and reproductive defects. Studies comparing sperm proteome with other male reproductive tissues have the potential to refine fertility diagnostics and guide infertility treatment development. AREAS COVERED: This review encapsulates literature using proteomic approaches to progress male reproductive biology. Our search methodology included systematic searches of databases such as PubMed, Scopus, and Web of Science for articles up to 2023. Keywords used included 'male fertility proteomics,' 'spermatozoa proteome,' 'testis proteomics,' 'epididymal proteomics,' and 'non-hormonal male contraception.' Inclusion criteria were robust experimental design, significant contributions to male fertility, and novel use of proteomic technologies. EXPERT OPINION: Expert analysis shows a shift from traditional research to an integrative approach that clarifies male reproductive health's molecular intricacies. A gap exists between proteomic discoveries and clinical application. The expert opinions consolidated here not only navigate the current findings but also chart the future proteomic applications for scientific and clinical breakthroughs. We underscore the need for continued investment in proteomic research - both in the technological and collaborative arenas - to further unravel the secrets of male fertility, which will be central to resolving fertility issues in the coming era.


Asunto(s)
Infertilidad Masculina , Proteómica , Masculino , Proteómica/métodos , Humanos , Infertilidad Masculina/metabolismo , Espermatozoides/metabolismo , Fertilidad/fisiología , Proteoma/metabolismo , Animales , Biomarcadores/metabolismo
2.
Am J Hum Genet ; 107(3): 564-574, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32822602

RESUMEN

KAT5 encodes an essential lysine acetyltransferase, previously called TIP60, which is involved in regulating gene expression, DNA repair, chromatin remodeling, apoptosis, and cell proliferation; but it remains unclear whether variants in this gene cause a genetic disease. Here, we study three individuals with heterozygous de novo missense variants in KAT5 that affect normally invariant residues, with one at the chromodomain (p.Arg53His) and two at or near the acetyl-CoA binding site (p.Cys369Ser and p.Ser413Ala). All three individuals have cerebral malformations, seizures, global developmental delay or intellectual disability, and severe sleep disturbance. Progressive cerebellar atrophy was also noted. Histone acetylation assays with purified variant KAT5 demonstrated that the variants decrease or abolish the ability of the resulting NuA4/TIP60 multi-subunit complexes to acetylate the histone H4 tail in chromatin. Transcriptomic analysis in affected individual fibroblasts showed deregulation of multiple genes that control development. Moreover, there was also upregulated expression of PER1 (a key gene involved in circadian control) in agreement with sleep anomalies in all of the individuals. In conclusion, dominant missense KAT5 variants cause histone acetylation deficiency with transcriptional dysregulation of multiples genes, thereby leading to a neurodevelopmental syndrome with sleep disturbance, cerebellar atrophy, and facial dysmorphisms, and suggesting a recognizable syndrome.


Asunto(s)
Atrofia/genética , Enfermedades Cerebelosas/genética , Discapacidad Intelectual/genética , Lisina Acetiltransferasa 5/genética , Anomalías Múltiples/diagnóstico por imagen , Anomalías Múltiples/genética , Anomalías Múltiples/fisiopatología , Adolescente , Adulto , Atrofia/diagnóstico por imagen , Atrofia/fisiopatología , Enfermedades Cerebelosas/diagnóstico por imagen , Enfermedades Cerebelosas/fisiopatología , Preescolar , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Reparación del ADN/genética , Epilepsia/diagnóstico por imagen , Epilepsia/genética , Epilepsia/fisiopatología , Femenino , Heterocigoto , Histonas/genética , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/fisiopatología , Masculino , Mutación Missense/genética , Procesamiento Proteico-Postraduccional/genética
3.
BMC Biol ; 20(1): 161, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831855

RESUMEN

BACKGROUND: Ubiquitination is a post-translational modification required for a number of physiological functions regulating protein homeostasis, such as protein degradation. The endoplasmic reticulum (ER) quality control system recognizes and degrades proteins no longer needed in the ER through the ubiquitin-proteasome pathway. E2 and E3 enzymes containing a transmembrane domain have been shown to function in ER quality control. The ER transmembrane protein UBE2J1 is a E2 ubiquitin-conjugating enzyme reported to be essential for spermiogenesis at the elongating spermatid stage. Spermatids from Ube2j1 KO male mice are believed to have defects in the dislocation step of ER quality control. However, associated E3 ubiquitin-protein ligases that function during spermatogenesis remain unknown. RESULTS: We identified four evolutionarily conserved testis-specific E3 ubiquitin-protein ligases [RING finger protein 133 (Rnf133); RING finger protein 148 (Rnf148); RING finger protein 151 (Rnf151); and Zinc finger SWIM-type containing 2 (Zswim2)]. Using the CRISPR/Cas9 system, we generated and analyzed the fertility of mutant mice with null alleles for each of these E3-encoding genes, as well as double and triple knockout (KO) mice. Male fertility, male reproductive organ, and sperm-associated parameters were analyzed in detail. Fecundity remained largely unaffected in Rnf148, Rnf151, and Zswim2 KO males; however, Rnf133 KO males displayed severe subfertility. Additionally, Rnf133 KO sperm exhibited abnormal morphology and reduced motility. Ultrastructural analysis demonstrated that cytoplasmic droplets were retained in Rnf133 KO spermatozoa. Although Rnf133 and Rnf148 encode paralogous genes that are chromosomally linked and encode putative ER transmembrane E3 ubiquitin-protein ligases based on their protein structures, there was limited functional redundancy of these proteins. In addition, we identified UBE2J1 as an E2 ubiquitin-conjugating protein that interacts with RNF133. CONCLUSIONS: Our studies reveal that RNF133 is a testis-expressed E3 ubiquitin-protein ligase that plays a critical role for sperm function during spermiogenesis. Based on the presence of a transmembrane domain in RNF133 and its interaction with the ER containing E2 protein UBE2J1, we hypothesize that these ubiquitin-regulatory proteins function together in ER quality control during spermatogenesis.


Asunto(s)
Testículo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Fertilidad , Masculino , Ratones , Semen/metabolismo , Testículo/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
4.
Am J Hum Genet ; 104(3): 530-541, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30827496

RESUMEN

Acetylation of the lysine residues in histones and other DNA-binding proteins plays a major role in regulation of eukaryotic gene expression. This process is controlled by histone acetyltransferases (HATs/KATs) found in multiprotein complexes that are recruited to chromatin by the scaffolding subunit transformation/transcription domain-associated protein (TRRAP). TRRAP is evolutionarily conserved and is among the top five genes intolerant to missense variation. Through an international collaboration, 17 distinct de novo or apparently de novo variants were identified in TRRAP in 24 individuals. A strong genotype-phenotype correlation was observed with two distinct clinical spectra. The first is a complex, multi-systemic syndrome associated with various malformations of the brain, heart, kidneys, and genitourinary system and characterized by a wide range of intellectual functioning; a number of affected individuals have intellectual disability (ID) and markedly impaired basic life functions. Individuals with this phenotype had missense variants clustering around the c.3127G>A p.(Ala1043Thr) variant identified in five individuals. The second spectrum manifested with autism spectrum disorder (ASD) and/or ID and epilepsy. Facial dysmorphism was seen in both groups and included upslanted palpebral fissures, epicanthus, telecanthus, a wide nasal bridge and ridge, a broad and smooth philtrum, and a thin upper lip. RNA sequencing analysis of skin fibroblasts derived from affected individuals skin fibroblasts showed significant changes in the expression of several genes implicated in neuronal function and ion transport. Thus, we describe here the clinical spectrum associated with TRRAP pathogenic missense variants, and we suggest a genotype-phenotype correlation useful for clinical evaluation of the pathogenicity of the variants.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Trastorno Autístico/etiología , Discapacidad Intelectual/etiología , Mutación Missense , Proteínas Nucleares/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Masculino , Pronóstico , Homología de Secuencia , Síndrome , Adulto Joven
5.
Am J Hum Genet ; 104(1): 164-178, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30580808

RESUMEN

SMARCC2 (BAF170) is one of the invariable core subunits of the ATP-dependent chromatin remodeling BAF (BRG1-associated factor) complex and plays a crucial role in embryogenesis and corticogenesis. Pathogenic variants in genes encoding other components of the BAF complex have been associated with intellectual disability syndromes. Despite its significant biological role, variants in SMARCC2 have not been directly associated with human disease previously. Using whole-exome sequencing and a web-based gene-matching program, we identified 15 individuals with variable degrees of neurodevelopmental delay and growth retardation harboring one of 13 heterozygous variants in SMARCC2, most of them novel and proven de novo. The clinical presentation overlaps with intellectual disability syndromes associated with other BAF subunits, such as Coffin-Siris and Nicolaides-Baraitser syndromes and includes prominent speech impairment, hypotonia, feeding difficulties, behavioral abnormalities, and dysmorphic features such as hypertrichosis, thick eyebrows, thin upper lip vermilion, and upturned nose. Nine out of the fifteen individuals harbor variants in the highly conserved SMARCC2 DNA-interacting domains (SANT and SWIRM) and present with a more severe phenotype. Two of these individuals present cardiac abnormalities. Transcriptomic analysis of fibroblasts from affected individuals highlights a group of differentially expressed genes with possible roles in regulation of neuronal development and function, namely H19, SCRG1, RELN, and CACNB4. Our findings suggest a novel SMARCC2-related syndrome that overlaps with neurodevelopmental disorders associated with variants in BAF-complex subunits.


Asunto(s)
Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/genética , Mutación , Factores de Transcripción/genética , Anomalías Múltiples/genética , Adolescente , Niño , Preescolar , Proteínas de Unión al ADN , Cara/anomalías , Femenino , Deformidades Congénitas de la Mano/genética , Humanos , Masculino , Micrognatismo/genética , Cuello/anomalías , Proteína Reelina , Síndrome
6.
Am J Hematol ; 97(5): 562-573, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35132679

RESUMEN

There are limited prospective data on lenalidomide, subcutaneous bortezomib, and dexamethasone (RsqVd) in transplant-eligible/transplant-ineligible patients with newly diagnosed multiple myeloma. Reliable biomarkers for efficacy and toxicity are required to better tailor therapy. Two parallel studies were conducted by Cancer Trials Ireland (CTI; NCT02219178) and the Dana-Farber Cancer Institute (DFCI; NCT02441686). Patients received four 21-day cycles of RsqVd and could then receive either another 4 cycles of RsqVd or undergo autologous stem cell transplant. Postinduction/posttransplant, patients received lenalidomide maintenance, with bortezomib included for high-risk patients. The primary endpoint was overall response rate (ORR) after 4 cycles of RsqVd. Eighty-eight patients were enrolled and 84 treated across the two studies; median age was 64.7 (CTI study) and 60.0 years (DFCI study), and 59% and 57% had stage II-III disease. Pooled ORR after 4 cycles in evaluable patients was 93.5%, including 48.1% complete or very good partial responses (CTI study: 91.9%, 59.5%; DFCI study: 95.0%, 37.5%), and in the all-treated population was 85.7% (44.0%). Patients received a median of 4 (CTI study) and 8 (DFCI study) RsqVd cycles; 60% and 31% of patients (CTI study) and 33% and 51% of patients (DFCI study) underwent transplant or received further RsqVd induction, respectively. The most common toxicity was peripheral neuropathy (pooled: 68%, 7% grade 3-4; CTI study: 57%, 7%; DFCI study: 79%, 7%). Proteomics analyses indicated elevated kallikrein-6 in good versus poor responders, decreased midkine in good responders, and elevated macrophage inflammatory protein 1-alpha in patients who stopped treatment from neurotoxicity, suggesting predictive biomarkers warranting further investigation.


Asunto(s)
Mieloma Múltiple , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Bortezomib/efectos adversos , Dexametasona/efectos adversos , Humanos , Quimioterapia de Inducción , Lenalidomida/efectos adversos , Persona de Mediana Edad , Mieloma Múltiple/terapia , Estudios Prospectivos
7.
Haematologica ; 106(11): 2940-2946, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33179472

RESUMEN

Histological transformation into diffuse large B-cell lymphoma is a rare complication in patients with Waldenström macroglobulinemia (WM) usually associated with a poor prognosis. The objective of this study was to develop and validate a prognostic index for survival in transformed WM patients. Through this multicenter, international collaborative effort, we developed a scoring system based on data from 133 patients with transformed WM who were evaluated between 1995 and 2016 (training cohort). Univariate and multivariate analyses were used to propose a prognostic index with 2-year survival after transformation as an end-point. For external validation, a data set of 67 patients was used to evaluate the performance of the model (validation cohort). By multivariate analysis, three adverse covariates were identified as independent predictors of 2-year survival after transformation: elevated serum LDH (2 points), platelet count < 100 x 109/L (1 point) and any previous treatment for WM (1 point). Three risk groups were defined: low-risk (0-1 point, 24% of patients), intermediate-risk (2-3 points, 59%, hazard ratio (HR) = 3.4) and high-risk (4 points, 17%, HR = 7.5). Two-year survival rates were 81%, 47%, and 21%, respectively (P < 0.0001). This model appeared to be a better discriminant than the International Prognostic Index (IPI) and the revised IPI (R-IPI). We validated this model in an independent cohort. This easy-to-compute scoring index is a robust tool that may allow identification of groups of transformed WM patients with different outcomes and could be used for improving the development of risk-adapted treatment strategies.


Asunto(s)
Linfoma de Células B Grandes Difuso , Macroglobulinemia de Waldenström , Humanos , Pronóstico , Modelos de Riesgos Proporcionales , Tasa de Supervivencia , Macroglobulinemia de Waldenström/diagnóstico
9.
BMC Biol ; 18(1): 103, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32814578

RESUMEN

BACKGROUND: The development of a safe, effective, reversible, non-hormonal contraceptive method for men has been an ongoing effort for the past few decades. However, despite significant progress on elucidating the function of key proteins involved in reproduction, understanding male reproductive physiology is limited by incomplete information on the genes expressed in reproductive tissues, and no contraceptive targets have so far reached clinical trials. To advance product development, further identification of novel reproductive tract-specific genes leading to potentially druggable protein targets is imperative. RESULTS: In this study, we expand on previous single tissue, single species studies by integrating analysis of publicly available human and mouse RNA-seq datasets whose initial published purpose was not focused on identifying male reproductive tract-specific targets. We also incorporate analysis of additional newly acquired human and mouse testis and epididymis samples to increase the number of targets identified. We detected a combined total of 1178 genes for which no previous evidence of male reproductive tract-specific expression was annotated, many of which are potentially druggable targets. Through RT-PCR, we confirmed the reproductive tract-specific expression of 51 novel orthologous human and mouse genes without a reported mouse model. Of these, we ablated four epididymis-specific genes (Spint3, Spint4, Spint5, and Ces5a) and two testis-specific genes (Pp2d1 and Saxo1) in individual or double knockout mice generated through the CRISPR/Cas9 system. Our results validate a functional requirement for Spint4/5 and Ces5a in male mouse fertility, while demonstrating that Spint3, Pp2d1, and Saxo1 are each individually dispensable for male mouse fertility. CONCLUSIONS: Our work provides a plethora of novel testis- and epididymis-specific genes and elucidates the functional requirement of several of these genes, which is essential towards understanding the etiology of male infertility and the development of male contraceptives.


Asunto(s)
Epidídimo/metabolismo , Expresión Génica , Testículo/metabolismo , Animales , Humanos , Masculino , Ratones , RNA-Seq , Reproducción
10.
Gut ; 69(1): 158-167, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30833451

RESUMEN

OBJECTIVE: Hepatitis D virus (HDV) is a circular RNA virus coinfecting hepatocytes with hepatitis B virus. Chronic hepatitis D results in severe liver disease and an increased risk of liver cancer. Efficient therapeutic approaches against HDV are absent. DESIGN: Here, we combined an RNAi loss-of-function and small molecule screen to uncover host-dependency factors for HDV infection. RESULTS: Functional screening unravelled the hypoxia-inducible factor (HIF)-signalling and insulin-resistance pathways, RNA polymerase II, glycosaminoglycan biosynthesis and the pyrimidine metabolism as virus-hepatocyte dependency networks. Validation studies in primary human hepatocytes identified the carbamoyl-phosphatesynthetase 2, aspartate transcarbamylase and dihydroorotase (CAD) enzyme and estrogen receptor alpha (encoded by ESR1) as key host factors for HDV life cycle. Mechanistic studies revealed that the two host factors are required for viral replication. Inhibition studies using N-(phosphonoacetyl)-L-aspartic acid and fulvestrant, specific CAD and ESR1 inhibitors, respectively, uncovered their impact as antiviral targets. CONCLUSION: The discovery of HDV host-dependency factors elucidates the pathogenesis of viral disease biology and opens therapeutic strategies for HDV cure.


Asunto(s)
Aspartato Carbamoiltransferasa/genética , Ácido Aspártico/análogos & derivados , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/genética , Dihidroorotasa/genética , Receptor alfa de Estrógeno/metabolismo , Fulvestrant/farmacología , Hepatitis D Crónica/tratamiento farmacológico , Ácido Fosfonoacético/análogos & derivados , Pirimidinas/biosíntesis , Antivirales/farmacología , Aspartato Carbamoiltransferasa/antagonistas & inhibidores , Aspartato Carbamoiltransferasa/metabolismo , Ácido Aspártico/farmacología , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/antagonistas & inhibidores , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/metabolismo , Línea Celular , Dihidroorotasa/antagonistas & inhibidores , Dihidroorotasa/metabolismo , Antagonistas del Receptor de Estrógeno/farmacología , Receptor alfa de Estrógeno/antagonistas & inhibidores , Silenciador del Gen , Hepatitis D Crónica/genética , Hepatitis D Crónica/metabolismo , Virus de la Hepatitis Delta/fisiología , Hepatocitos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Resistencia a la Insulina , Estadios del Ciclo de Vida , Mutación con Pérdida de Función , Ácido Fosfonoacético/farmacología , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Viral/metabolismo , Transducción de Señal , Replicación Viral
11.
Biol Reprod ; 103(2): 195-204, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32561905

RESUMEN

As the world population continues to increase to unsustainable levels, the importance of birth control and the development of new contraceptives are emerging. To date, male contraceptive options have been lagging behind those available to women, and those few options available are not satisfactory to everyone. To solve this problem, we have been searching for new candidate target proteins for non-hormonal contraceptives. Testis-specific proteins are appealing targets for male contraceptives because they are more likely to be involved in male reproduction and their targeting by small molecules is predicted to have no on-target harmful effects on other organs. Using in silico analysis, we identified Erich2, Glt6d1, Prss58, Slfnl1, Sppl2c, Stpg3, Tex33, and Tex36 as testis-abundant genes in both mouse and human. The genes, 4930402F06Rik and 4930568D16Rik, are testis-abundant paralogs of Glt6d1 that we also discovered in mice but not in human, and were also included in our studies to eliminate the potential compensation. We generated knockout (KO) mouse lines of all listed genes using the CRISPR/Cas9 system. Analysis of all of the individual KO mouse lines as well as Glt6d1/4930402F06Rik/4930568D16Rik TKO mouse lines revealed that they are male fertile with no observable defects in reproductive organs, suggesting that these 10 genes are not required for male fertility nor play redundant roles in the case of the 3 Glt6D1 paralogs. Further studies are needed to uncover protein function(s), but in vivo functional screening using the CRISPR/Cas9 system is a fast and accurate way to find genes essential for male fertility, which may apply to studies of genes expressed elsewhere. In this study, although we could not find any potential protein targets for non-hormonal male contraceptives, our findings help to streamline efforts to find and focus on only the essential genes.


Asunto(s)
Fertilidad/genética , Testículo/metabolismo , Animales , Sistemas CRISPR-Cas , Edición Génica , Masculino , Ratones , Ratones Noqueados , Espermatogénesis/genética
12.
Biol Reprod ; 102(1): 84-91, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31403672

RESUMEN

High-throughput transcriptomics and proteomics approaches have recently identified a large number of germ cell-specific genes with many that remain to be studied through functional genetics approaches. Serine proteases (PRSS) constitute nearly one-third of all proteases, and, in our bioinformatics screens, we identified many that are testis specific. In this study, we chose to focus on Prss44, Prss46, and Prss54, which we confirmed as testis specific in mouse and human. Based on the analysis of developmental expression in the mouse, expression of all four genes is restricted to the late stage of spermatogenesis concomitant with a potential functional role in spermiogenesis, spermiation, or sperm function. To best understand the male reproductive requirement and functional roles of these serine proteases, each gene was individually ablated by CRISPR/Cas9-mediated ES cell or zygote approach. Homozygous deletion mutants for each gene were obtained and analyzed for phenotypic changes. Analyses of testis weights, testis and epididymis histology, sperm morphology, and fertility revealed no significant differences in Prss44, Prss46, and Prss54 knockout mice in comparison to controls. Our results thereby demonstrate that these genes are not required for normal fertility in mice, although do not preclude the possibility that these genes may function in a redundant manner. Elucidating the individual functional requirement or lack thereof of these novel genes is necessary to build a better understanding of the factors underlying spermatogenesis and sperm maturation, which has implications in understanding the etiology of male infertility and the development of male contraceptives.


Asunto(s)
Fertilidad/fisiología , Infertilidad Masculina/metabolismo , Serina Endopeptidasas/metabolismo , Espermatogénesis/genética , Espermatozoides/metabolismo , Testículo/metabolismo , Animales , Forma de la Célula/fisiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Infertilidad Masculina/genética , Masculino , Ratones , Ratones Noqueados , Tamaño de los Órganos/fisiología , Serina Endopeptidasas/genética , Espermatozoides/citología
13.
Biol Reprod ; 103(2): 183-194, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32588039

RESUMEN

Developing a safe and effective male contraceptive remains a challenge in the field of medical science. Molecules that selectively target the male reproductive tract and whose targets are indispensable for male reproductive function serve among the best candidates for a novel non-hormonal male contraceptive method. To determine the function of these genes in vivo, mutant mice carrying disrupted testis- or epididymis-enriched genes were generated by zygote microinjection or electroporation of the CRISPR/Cas9 components. Male fecundity was determined by consecutively pairing knockout males with wild-type females and comparing the fecundity of wild-type controls. Phenotypic analyses of testis appearance and weight, testis and epididymis histology, and sperm movement were further carried out to examine any potential spermatogenic or sperm maturation defect in mutant males. In this study, we uncovered 13 testis- or epididymis-enriched evolutionarily conserved genes that are individually dispensable for male fertility in mice. Owing to their dispensable nature, it is not feasible to use these targets for the development of a male contraceptive.


Asunto(s)
Epidídimo/metabolismo , Reproducción/genética , Testículo/metabolismo , Animales , Sistemas CRISPR-Cas , Edición Génica , Masculino , Ratones , Filogenia , Motilidad Espermática/genética , Espermatogénesis/genética
14.
Bioinformatics ; 35(2): 274-283, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29982278

RESUMEN

Motivation: Metabolomics has shown great potential to improve the understanding of complex diseases, potentially leading to therapeutic target identification. However, no single analytical method allows monitoring all metabolites in a sample, resulting in incomplete metabolic fingerprints. This incompleteness constitutes a stumbling block to interpretation, raising the need for methods that can enrich those fingerprints. We propose MetaboRank, a new solution inspired by social network recommendation systems for the identification of metabolites potentially related to a metabolic fingerprint. Results: MetaboRank method had been used to enrich metabolomics data obtained on cerebrospinal fluid samples from patients suffering from hepatic encephalopathy (HE). MetaboRank successfully recommended metabolites not present in the original fingerprint. The quality of recommendations was evaluated by using literature automatic search, in order to check that recommended metabolites could be related to the disease. Complementary mass spectrometry experiments and raw data analysis were performed to confirm these suggestions. In particular, MetaboRank recommended the overlooked α-ketoglutaramate as a metabolite which should be added to the metabolic fingerprint of HE, thus suggesting that metabolic fingerprints enhancement can provide new insight on complex diseases. Availability and implementation: Method is implemented in the MetExplore server and is available at www.metexplore.fr. A tutorial is available at https://metexplore.toulouse.inra.fr/com/tutorials/MetaboRank/2017-MetaboRank.pdf. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Metabolómica , Programas Informáticos , Biología Computacional , Humanos , Espectrometría de Masas
15.
FASEB J ; 33(7): 8423-8435, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30991836

RESUMEN

Cytochrome P450 family 26 subfamily B member 1 (CYP26B1) regulates the concentration of all-trans retinoic acid (RA) and plays a key role in germ cell differentiation by controlling local distribution of RA. The mechanisms regulating Cyp26b1 expression in postnatal Sertoli cells, the main components of the stem cell niche, are so far unknown. During gonad development, expression of Cyp26b1 is maintained by Steroidogenic Factor 1 (SF-1) and Sex-Determining Region Y Box-9 (SOX9), which ensure that RA is degraded and germ cell differentiation is blocked. Here, we show that the NOTCH target Hairy/Enhancer-of-Split Related with YRPW Motif 1 (HEY1), a transcriptional repressor, regulates germ cell differentiation via direct binding to the Cyp26b1 promoter and thus inhibits its expression in Sertoli cells. Further, using in vivo germ cell ablation, we demonstrate that undifferentiated type A spermatogonia are the cells that activate NOTCH signaling in Sertoli cells through their expression of the NOTCH ligand JAGGED-1 (JAG1) at stage VIII of the seminiferous epithelium cycle, therefore mediating germ cell differentiation by a ligand concentration-dependent process. These data therefore provide more insights into the mechanisms of germ cell differentiation after birth and potentially explain the spatiotemporal RA pulses driving the transition between undifferentiated to differentiating spermatogonia.-Parekh, P. A., Garcia, T. X., Waheeb, R., Jain, V., Gandhi, P., Meistrich, M. L., Shetty, G., Hofmann, M.-C. Undifferentiated spermatogonia regulate Cyp26b1 expression through NOTCH signaling and drive germ cell differentiation.


Asunto(s)
Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Receptores Notch/metabolismo , Ácido Retinoico 4-Hidroxilasa/biosíntesis , Transducción de Señal , Espermatogonias/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Masculino , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , Receptores Notch/genética , Ácido Retinoico 4-Hidroxilasa/genética , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Espermatogonias/citología , Factor Esteroidogénico 1/genética , Factor Esteroidogénico 1/metabolismo
16.
Biol Reprod ; 101(2): 501-511, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31201419

RESUMEN

More than 1000 genes are predicted to be predominantly expressed in mouse testis, yet many of them remain unstudied in terms of their roles in spermatogenesis and sperm function and their essentiality in male reproduction. Since individually indispensable factors can provide important implications for the diagnosis of genetically related idiopathic male infertility and may serve as candidate targets for the development of nonhormonal male contraceptives, our laboratories continuously analyze the functions of testis-enriched genes in vivo by generating knockout mouse lines using the CRISPR/Cas9 system. The dispensability of genes in male reproduction is easily determined by examining the fecundity of knockout males. During our large-scale screening of essential factors, we knocked out 30 genes that have a strong bias of expression in the testis and are mostly conserved in mammalian species including human. Fertility tests reveal that the mutant males exhibited normal fecundity, suggesting these genes are individually dispensable for male reproduction. Since such functionally redundant genes are of diminished biological and clinical significance, we believe that it is crucial to disseminate this list of genes, along with their phenotypic information, to the scientific community to avoid unnecessary expenditure of time and research funds and duplication of efforts by other laboratories.


Asunto(s)
Sistemas CRISPR-Cas , Fertilidad/genética , Edición Génica , Regulación de la Expresión Génica/fisiología , Testículo/metabolismo , Animales , Humanos , Infertilidad Masculina/genética , Masculino , Ratones , Ratones Noqueados , Transcriptoma
17.
Reproduction ; 157(3): R95-R107, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30620720

RESUMEN

Sertoli cells regulate male germ cell proliferation and differentiation and are a critical component of the spermatogonial stem cell (SSC) niche, where homeostasis is maintained by the interplay of several signaling pathways and growth factors. These factors are secreted by Sertoli cells located within the seminiferous epithelium, and by interstitial cells residing between the seminiferous tubules. Sertoli cells and peritubular myoid cells produce glial cell line-derived neurotrophic factor (GDNF), which binds to the RET/GFRA1 receptor complex at the surface of undifferentiated spermatogonia. GDNF is known for its ability to drive SSC self-renewal and proliferation of their direct cell progeny. Even though the effects of GDNF are well studied, our understanding of the regulation its expression is still limited. The purpose of this review is to discuss how GDNF expression in Sertoli cells is modulated within the niche, and how these mechanisms impact germ cell homeostasis.


Asunto(s)
Diferenciación Celular , Autorrenovación de las Células , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Células de Sertoli/citología , Espermatogonias/citología , Nicho de Células Madre , Células Madre/citología , Animales , Humanos , Masculino , Células de Sertoli/metabolismo , Espermatogonias/metabolismo , Células Madre/metabolismo
18.
Br J Haematol ; 180(6): 831-839, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29315478

RESUMEN

We report a multicentre retrospective study that analysed clinical characteristics and outcomes in 117 patients with primary plasma cell leukaemia (pPCL) treated at the participating institutions between January 2006 and December 2016. The median age at the time of pPCL diagnosis was 61 years. Ninety-eight patients were treated with novel agents, with an overall response rate of 78%. Fifty-five patients (64%) patients underwent upfront autologous stem cell transplantation (ASCT). The median follow-up time was 50 months (95% confidence interval [CI] 33; 76), with a median overall survival (OS) for the entire group of 23 months (95% CI 15; 34). The median OS time in patients who underwent upfront ASCT was 35 months (95% CI 24·3; 46) as compared to 13 months (95% CI 6·3; 35·8) in patients who did not receive ASCT (P = 0·001). Multivariate analyses identified age ≥60 years, platelet count ≤100 × 109 /l and peripheral blood plasma cell count ≥20 × 109 /l as independent predictors of worse survival. The median OS in patients with 0, 1 or 2-3 of these risk factors was 46, 27 and 12 months, respectively (P < 0·001). Our findings support the use of novel agents and ASCT as frontline treatment in patients with pPCL. The constructed prognostic score should be independently validated.


Asunto(s)
Leucemia de Células Plasmáticas/mortalidad , Leucemia de Células Plasmáticas/terapia , Trasplante de Células Madre , Adulto , Anciano , Anciano de 80 o más Años , Autoinjertos , Supervivencia sin Enfermedad , Femenino , Humanos , Leucemia de Células Plasmáticas/patología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Tasa de Supervivencia
19.
Expert Rev Proteomics ; 15(12): 1033-1052, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30427223

RESUMEN

INTRODUCTION: Proteasome inhibitors (PIs) are therapeutic backbones of multiple myeloma treatment, with PI-based therapies being standards of care throughout the treatment algorithm. Proteasome inhibition affects multiple critical signaling pathways in myeloma cells and interacts synergistically with mechanisms of action of other conventional and novel agents, resulting in substantial anti-myeloma activity and at least additive effects. Areas covered: This review summarizes the biologic effects of proteasome inhibition in myeloma and provides an overview of the importance of proteasome inhibition to the current treatment algorithm. It reviews key clinical data on three PIs, specifically bortezomib, carfilzomib, and ixazomib; assesses ongoing phase 3 trials with these agents; and looks ahead to the increasingly broad role of both approved PIs and PIs under investigation in the frontline and relapsed settings. Expert commentary: Progress to date with PIs in multiple myeloma has been impressive, but there remain unmet needs and challenges, as well as increasing opportunities to optimize the use of these agents. Understanding discrepancies between PIs in terms of efficacy and safety profile is a key goal of ongoing research, along with proteomics-based efforts to identify potential biomarkers of sensitivity and resistance, thereby enabling increasingly personalized treatment approaches in the future.


Asunto(s)
Antineoplásicos/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Inhibidores de Proteasoma/uso terapéutico , Antineoplásicos/efectos adversos , Ensayos Clínicos Fase III como Asunto , Humanos , Inhibidores de Proteasoma/efectos adversos
20.
Development ; 141(23): 4468-78, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25406395

RESUMEN

Stem cells are influenced by their surrounding microenvironment, or niche. In the testis, Sertoli cells are the key niche cells directing the population size and differentiation fate of spermatogonial stem cells (SSCs). Failure to properly regulate SSCs leads to infertility or germ cell hyperplasia. Several Sertoli cell-expressed genes, such as Gdnf and Cyp26b1, have been identified as being indispensable for the proper maintenance of SSCs in their niche, but the pathways that modulate their expression have not been identified. Although we have recently found that constitutively activating NOTCH signaling in Sertoli cells leads to premature differentiation of all prospermatogonia and sterility, suggesting that there is a crucial role for this pathway in the testis stem cell niche, a true physiological function of NOTCH signaling in Sertoli cells has not been demonstrated. To this end, we conditionally ablated recombination signal binding protein for immunoglobulin kappa J region (Rbpj), a crucial mediator of NOTCH signaling, in Sertoli cells using Amh-cre. Rbpj knockout mice had: significantly increased testis sizes; increased expression of niche factors, such as Gdnf and Cyp26b1; significant increases in the number of pre- and post-meiotic germ cells, including SSCs; and, in a significant proportion of mice, testicular failure and atrophy with tubule lithiasis, possibly due to these unsustainable increases in the number of germ cells. We also identified germ cells as the NOTCH ligand-expressing cells. We conclude that NOTCH signaling in Sertoli cells is required for proper regulation of the testis stem cell niche and is a potential feedback mechanism, based on germ cell input, that governs the expression of factors that control SSC proliferation and differentiation.


Asunto(s)
Microambiente Celular/fisiología , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Células de Sertoli/metabolismo , Espermatogonias/fisiología , Células Madre/fisiología , Testículo/citología , Testículo/embriología , Animales , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Testículo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA