Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Microb Cell Fact ; 23(1): 116, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643119

RESUMEN

BACKGROUND: Most recombinant Komagataella phaffii (Pichia pastoris) strains for protein production are generated by genomic integration of expression cassettes. The clonal variability in gene copy numbers, integration loci and consequently product titers limit the aptitude for high throughput applications in drug discovery, enzyme engineering or most comparative analyses of genetic elements such as promoters or secretion signals. Circular episomal plasmids with an autonomously replicating sequence (ARS), an alternative which would alleviate some of these limitations, are inherently unstable in K. phaffii. Permanent selection pressure, mostly enabled by antibiotic resistance or auxotrophy markers, is crucial for plasmid maintenance and hardly scalable for production. The establishment and use of extrachromosomal ARS plasmids with key genes of the glycerol metabolism (glycerol kinase 1, GUT1, and triosephosphate isomerase 1, TPI1) as selection markers was investigated to obtain a system with high transformation rates that can be directly used for scalable production processes in lab scale bioreactors. RESULTS: In micro-scale deep-well plate experiments, ARS plasmids employing the Ashbya gossypii TEF1 (transcription elongation factor 1) promoter to regulate transcription of the marker gene were found to deliver high transformation efficiencies and the best performances with the reporter protein (CalB, lipase B of Candida antarctica) for both, the GUT1- and TPI1-based, marker systems. The GUT1 marker-bearing strain surpassed the reference strain with integrated expression cassette by 46% upon re-evaluation in shake flask cultures regarding CalB production, while the TPI1 system was slightly less productive compared to the control. In 5 L bioreactor methanol-free fed-batch cultivations, the episomal production system employing the GUT1 marker led to 100% increased CalB activity in the culture supernatant compared to integration construct. CONCLUSIONS: For the first time, a scalable and methanol-independent expression system for recombinant protein production for K. phaffii using episomal expression vectors was demonstrated. Expression of the GUT1 selection marker gene of the new ARS plasmids was refined by employing the TEF1 promoter of A. gossypii. Additionally, the antibiotic-free marker toolbox for K. phaffii was expanded by the TPI1 marker system, which proved to be similarly suited for the use in episomal plasmids as well as integrative expression constructs for the purpose of recombinant protein production.


Asunto(s)
Pichia , Saccharomycetales , Pichia/metabolismo , Carbono/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Proteínas Recombinantes , Plásmidos/genética
2.
Microb Cell Fact ; 20(1): 90, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33902608

RESUMEN

BACKGROUND: Currently, the numerous and versatile applications in pharmaceutical and chemical industry make the recombinant production of cytochrome P450 enzymes (CYPs) of great biotechnological interest. Accelerating the drug development process by simple, quick and scalable access of human drug metabolites is key for efficient and targeted drug development in response to new and sometimes unexpected medical challenges and needs. However, due its biochemical complexity, scalable human CYP (hCYP) production and their application in preparative biotransformations was still in its infancy. RESULTS: A scalable bioprocess for fine-tuned co-expression of hCYP2C9 and its essential complementary human cytochrome P450 reductase (hCPR) in the yeast Pichia pastoris (Komagataella phaffii) is presented. High-throughput screening (HTS) of a transformant library employing a set of diverse bidirectional expression systems with different regulation patterns and a fluorimetric assay was used in order to fine-tune hCYP2C9 and hCPR co-expression, and to identify best expressing clonal variants. The bioprocess development for scalable and reliable whole cell biocatalyst production in bioreactors was carried out based on rational optimization criteria. Among the different alternatives studied, a glycerol carbon-limiting strategy at high µ showed highest production rates, while methanol co-addition together with a decrease of µ provided the best results in terms of product to biomass yield and whole cell activity. By implementing the mentioned strategies, up to threefold increases in terms of production rates and/or yield could be achieved in comparison with initial tests. Finally, the performance of the whole cell catalysts was demonstrated successfully in biotransformation using ibuprofen as substrate, demonstrating the expected high selectivity of the human enzyme catalyst for 3'hydroxyibuprofen. CONCLUSIONS: For the first time a scalable bioprocess for the production of hCYP2C9 whole cell catalysts was successfully designed and implemented in bioreactor cultures, and as well, further tested in a preparative-scale biotransformation of interest. The catalyst engineering procedure demonstrated the efficiency of the employment of a set of differently regulated bidirectional promoters to identify transformants with most effective membrane-bound hCYP/hCPR co-expression ratios and implies to become a model case for the generation of other P. pastoris based catalysts relying on co-expressed enzymes such as other P450 catalysts or enzymes relying on co-expressed enzymes for co-factor regeneration.


Asunto(s)
Sistema Enzimático del Citocromo P-450/biosíntesis , Ingeniería Metabólica/métodos , Proteínas Recombinantes/biosíntesis , Saccharomycetales/metabolismo , Reactores Biológicos , Catálisis , Humanos
3.
Microb Cell Fact ; 20(1): 74, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33757505

RESUMEN

BACKGROUND: Pichia pastoris is a powerful and broadly used host for recombinant protein production (RPP), where past bioprocess performance has often been directed with the methanol regulated AOX1 promoter (PAOX1), and the constitutive GAP promoter (PGAP). Since promoters play a crucial role in an expression system and the bioprocess efficiency, innovative alternatives are constantly developed and implemented. Here, a thorough comparative kinetic characterization of two expression systems based on the commercial PDF and UPP promoters (PPDF, PUPP) was first conducted in chemostat cultures. Most promising conditions were subsequently tested in fed-batch cultivations. These new alternatives were compared with the classical strong promoter PGAP, using the Candida antarctica lipase B (CalB) as model protein for expression system performance. RESULTS: Both the PPDF and PUPP-based expression systems outperformed similar PGAP-based expression in chemostat cultivations, reaching ninefold higher specific production rates (qp). CALB transcription levels were drastically higher when employing the novel expression systems. This higher expression was also correlated with a marked upregulation of unfolded protein response (UPR) related genes, likely from an increased protein burden in the endoplasmic reticulum (ER). Based on the chemostat results obtained, best culture strategies for both PPDF and PUPP expression systems were also successfully implemented in 15 L fed-batch cultivations where qp and product to biomass yield (YP/X*) values were similar than those obtained in chemostat cultivations. CONCLUSIONS: As an outcome of the macrokinetic characterization presented, the novel PPDF and PUPP were observed to offer much higher efficiency for CalB production than the widely used PGAP-based methanol-free alternative. Thus, both systems arise as highly productive alternatives for P. pastoris-based RPP bioprocesses. Furthermore, the different expression regulation patterns observed indicate the level of gene expression can be adjusted, or tuned, which is interesting when using Pichia pastoris as a cell factory for different products of interest.


Asunto(s)
Expresión Génica , Regiones Promotoras Genéticas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo , Técnicas de Cultivo Celular por Lotes , Cinética , Metanol/metabolismo
4.
Microb Cell Fact ; 18(1): 187, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31675969

RESUMEN

BACKGROUND: The PAOX1-based expression system is the most widely used for producing recombinant proteins in the methylotrophic yeast Pichia pastoris (Komagataella phaffii). Despite relevant recent advances in regulation of the methanol utilization (MUT) pathway have been made, the role of specific growth rate (µ) in AOX1 regulation remains unknown, and therefore, its impact on protein production kinetics is still unclear. RESULTS: The influence of heterologous gene dosage, and both, operational mode and strategy, on culture physiological state was studied by cultivating the two PAOX1-driven Candida rugosa lipase 1 (Crl1) producer clones. Specifically, a clone integrating a single expression cassette of CRL1 was compared with one containing three cassettes over broad dilution rate and µ ranges in both chemostat and fed-batch cultivations. Chemostat cultivations allowed to establish the impact of µ on the MUT-related MIT1 pool which leads to a bell-shaped relationship between µ and PAOX1-driven gene expression, influencing directly Crl1 production kinetics. Also, chemostat and fed-batch cultivations exposed the favorable effects of increasing the CRL1 gene dosage (up to 2.4 fold in qp) on Crl1 production with no significant detrimental effects on physiological capabilities. CONCLUSIONS: PAOX1-driven gene expression and Crl1 production kinetics in P. pastoris were successfully correlated with µ. In fact, µ governs MUT-related MIT1 amount that triggers PAOX1-driven gene expression-heterologous genes included-, thus directly influencing the production kinetics of recombinant protein.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Proteínas Fúngicas/metabolismo , Metanol/metabolismo , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Dosificación de Gen , Expresión Génica , Regulación Fúngica de la Expresión Génica , Pichia/genética , Regiones Promotoras Genéticas
5.
Microb Cell Fact ; 16(1): 86, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28526017

RESUMEN

BACKGROUND: Cultivation of recombinant Pichia pastoris (Komagataella sp.) under hypoxic conditions has a strong positive effect on specific productivity when the glycolytic GAP promoter is used for recombinant protein expression, mainly due to upregulation of glycolytic conditions. In addition, transcriptomic analyses of hypoxic P. pastoris pointed out important regulation of lipid metabolism and unfolded protein response (UPR). Notably, UPR that plays a role in the regulation of lipid metabolism, amino acid metabolism and protein secretion, was found to be upregulated under hypoxia. RESULTS: To improve our understanding of the interplay between lipid metabolism, UPR and protein secretion, the lipidome of a P. pastoris strain producing an antibody fragment was studied under hypoxic conditions. Furthermore, lipid composition analyses were combined with previously available transcriptomic datasets to further understand the impact of hypoxia on lipid metabolism. Chemostat cultures operated under glucose-limiting conditions under normoxic and hypoxic conditions were analyzed in terms of intra/extracellular product distribution and lipid composition. Integrated analysis of lipidome and transcriptome datasets allowed us to demonstrate an important remodeling of the lipid metabolism under limited oxygen availability. Additionally, cells with reduced amounts of ergosterol through fluconazole treatment were also included in the study to observe the impact on protein secretion and its lipid composition. CONCLUSIONS: Our results show that cells adjust their membrane composition in response to oxygen limitation mainly by changing their sterol and sphingolipid composition. Although fluconazole treatment results a different lipidome profile than hypoxia, both conditions result in higher recombinant protein secretion levels.


Asunto(s)
Metabolismo de los Lípidos/genética , Lípidos de la Membrana/metabolismo , Pichia/metabolismo , Respuesta de Proteína Desplegada , Ergosterol/biosíntesis , Fluconazol/farmacología , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Glucólisis , Lípidos de la Membrana/química , Oxígeno/metabolismo , Pichia/efectos de los fármacos , Pichia/genética , Pichia/crecimiento & desarrollo , Regiones Promotoras Genéticas , Transporte de Proteínas , Proteómica , Proteínas Recombinantes/metabolismo , Esfingolípidos/química , Esteroles/química
6.
Microb Biotechnol ; 17(2): e14411, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38376073

RESUMEN

The yeast Komagataella phaffii (Pichia pastoris) is currently considered a versatile and highly efficient host for recombinant protein production (RPP). Interestingly, the regulated application of specific stress factors as part of bioprocess engineering strategies has proven potential for increasing the production of recombinant products. This study aims to evaluate the impact of controlled oxygen-limiting conditions on the performance of K. phaffii bioprocesses for RPP in combination with the specific growth rate (µ) in fed-batch cultivations. In this work, Candida rugosa lipase 1 (Crl1) production, regulated by the constitutive GAP promoter, growing at different nominal µ (0.030, 0.065, 0.100 and 0.120 h-1 ) under both normoxic and hypoxic conditions in carbon-limiting fed-batch cultures is analysed. Hypoxic fermentations were controlled at a target respiratory quotient (RQ) of 1.4, with excellent performance, using an innovative automated control based on the stirring rate as the manipulated variable developed during this study. The results conclude that oxygen limitation positively affects bioprocess efficiency under all growing conditions compared. The shift from respiratory to respiro-fermentative metabolism increases bioprocess productivity by up to twofold for the specific growth rates evaluated. Moreover, the specific product generation rate (qp ) increases linearly with µ, regardless of oxygen availability. Furthermore, this hypoxic boosting effect was also observed in the production of Candida antarctica lipase B (CalB) and pro-Rhizopus oryzae lipase (proRol), thus proving the synergic effect of kinetic and physiological stress control. Finally, the Crl1 production scale-up was conducted successfully, confirming the strategy's scalability and the robustness of the results obtained at the bench-scale level.


Asunto(s)
Lipasa , Pichia , Saccharomycetales , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Lipasa/genética , Lipasa/metabolismo , Oxígeno/metabolismo
7.
PDA J Pharm Sci Technol ; 77(3): 146-165, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36122916

RESUMEN

According to the standard guidelines by the FDA, process validation in biopharma manufacturing encompasses a life cycle consisting of three stages: process design (PD), process qualification (PQ), and continued process verification (CPV). The validity and efficiency of the analytics methods employed during the CPV require extensive knowledge of the process. However, for new processes and new drugs, such knowledge is often not available from Process performance qualification and Validation (PPQV). In this work, the suitability of methods based on machine learning/artificial intelligence (ML/AI) for the CPV applied in bioprocess monitoring and cell physiological control of the yeast Pichia pastoris (Komagataella phaffii) was studied with limited historical data. In particular, the production of recombinant Candida rugosa lipase 1 (Crl1) under hypoxic conditions in fed-batch cultures was considered as a case study. Supervised and unsupervised machine learning models using data from fed-batch bioprocesses with different gene dosage clones under normoxic and hypoxic conditions were evaluated. Firstly, a multivariate anomaly detection (isolation forest) model was applied to the batch phase of the bioprocess. Secondly, a supervised random forest model for prediction of required operator's control actions during the semiautomated fed-batch phase under hypoxic conditions was assessed to maintain the respiratory quotient (RQ) within the desired range for maximizing the specific production rate (qP ). The performance of these models was tested on historical data using independent evaluation of the process by the process control engineer (subject matter expert-SME), and on real-time data in the case of manual action prediction, where the model was implemented to guide the control of the bioprocess. The work presented here constitutes a proof-of-concept that multivariate analytics methods, based on machine learning, can be a valuable tool for real-time monitoring and control of biopharma manufacturing bioprocesses to improve its efficiency and to assure product quality.


Asunto(s)
Inteligencia Artificial , Pichia , Proteínas Recombinantes , Pichia/genética , Reactores Biológicos , Técnicas de Cultivo Celular por Lotes
8.
Front Bioeng Biotechnol ; 11: 1130583, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37034257

RESUMEN

The current transition towards the circular bioeconomy requires a rational development of biorefineries to sustainably fulfill the present demands. The use of Komagataella phaffii (Pichia pastoris) can meet this challenge, since it has the capability to use crude glycerol as a carbon-source, a by-product from the biodiesel industry, while producing high- and low-added value products. Recombinant protein production (RPP) using K. phaffii has often been driven either by the methanol induced AOX1 promoter (P AOX1 ) and/or the constitutive GAP promoter (P GAP ). In the last years, strong efforts have been focused on developing novel expression systems that expand the toolbox variety of K. phaffii to efficiently produce diverse proteins that requires different strategies. In this work, a study was conducted towards the development of methanol-free expression system based on a heat-shock gene promoter (PDH) using glycerol as sole carbon source. Using this promoter, the recombinant expression is strongly induced in carbon-starving conditions. The classical P GAP was used as a benchmark, taking for both strains the lipase B from Candida antarctica (CalB) as model protein. Titer of CalB expressed under PDH outperformed P GAP controlled expression in shake-flask cultivations when using a slow-release continuous feeding technology, confirming that PDH is induced under pseudo-starving conditions. This increase was also confirmed in fed-batch cultivations. Several optimization rounds were carried out for PDH under different feeding and osmolarity conditions. In all of them the PDH controlled process outperformed the P GAP one in regard to CalB titer. The best PDH approach reached 3.6-fold more specific productivity than P GAP fed-batch at low µ. Compared to the optimum approach for P GAP -based process, the best PDH fed-batch strategy resulted in 2.3-fold higher titer, while the specific productivity was very similar. To summarize, PDH is an inducible promoter that exhibited a non-coupled growth regulation showing high performance, which provides a methanol-free additional solution to the usual growth-coupled systems for RPP. Thus, this novel system emerges as a potential alternative for K. phaffii RPP bioprocess and for revaluing crude glycerol, promoting the transition towards a circular economy.

9.
Front Bioeng Biotechnol ; 10: 818434, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35155391

RESUMEN

The combination of strain and bioprocess engineering strategies should be considered to obtain the highest levels of recombinant protein production (RPP) while assuring product quality and process reproducibility of heterologous products. In this work, two complementary approaches were investigated to improve bioprocess efficiency based on the yeast P. pastoris. Firstly, the performance of two Candida rugosa lipase 1 producer clones with different gene dosage under the regulation of the constitutive P GAP were compared in chemostat cultures with different oxygen-limiting conditions. Secondly, hypoxic conditions in carbon-limited fed-batch cultures were applied by means of a physiological control based on the respiratory quotient (RQ). Stirring rate was selected to maintain RQ between 1.4 and 1.6, since it was found to be the most favorable in chemostat. As the major outcome, between 2-fold and 4-fold higher specific production rate (q P ) values were observed when comparing multicopy clone (MCC) and single-copy clone (SCC), both in chemostat and fed-batch. Additionally, when applying oxygen limitation, between 1.5-fold and 3-fold higher q P values were obtained compared with normoxic conditions. Thus, notable increases of up to 9-fold in the production rates were reached. Furthermore, transcriptional analysis of certain key genes related to RPP and central carbon metabolism were performed. Results seem to indicate the presence of a limitation in post-transcriptional protein processing steps and a possible transcription attenuation of the target gene in the strains with high gene dosage. The entire approach, including both strain and bioprocess engineering, represents a relevant novelty involving physiological control in Pichia cell factory and is of crucial interest in bioprocess optimization, boosting RPP, allowing bioproducts to be economically competitive in the market, and helping develop the bioeconomy.

10.
Artículo en Inglés | MEDLINE | ID: mdl-32671036

RESUMEN

The methylotrophic yeast Pichia pastoris (Komagataella phaffii) is currently considered one of the most promising hosts for recombinant protein production (RPP) and metabolites due to the availability of several tools to efficiently regulate the recombinant expression, its ability to perform eukaryotic post-translational modifications and to secrete the product in the extracellular media. The challenge of improving the bioprocess efficiency can be faced from two main approaches: the strain engineering, which includes enhancements in the recombinant expression regulation as well as overcoming potential cell capacity bottlenecks; and the bioprocess engineering, focused on the development of rational-based efficient operational strategies. Understanding the effect of strain and operational improvements in bioprocess efficiency requires to attain a robust knowledge about the metabolic and physiological changes triggered into the cells. For this purpose, a number of studies have revealed chemostat cultures to provide a robust tool for accurate, reliable, and reproducible bioprocess characterization. It should involve the determination of key specific rates, productivities, and yields for different C and N sources, as well as optimizing media formulation and operating conditions. Furthermore, studies along the different levels of systems biology are usually performed also in chemostat cultures. Transcriptomic, proteomic and metabolic flux analysis, using different techniques like differential target gene expression, protein description and 13C-based metabolic flux analysis, are widely described as valued examples in the literature. In this scenario, the main advantage of a continuous operation relies on the quality of the homogeneous samples obtained under steady-state conditions, where both the metabolic and physiological status of the cells remain unaltered in an all-encompassing picture of the cell environment. This contribution aims to provide the state of the art of the different approaches that allow the design of rational strain and bioprocess engineering improvements in Pichia pastoris toward optimizing bioprocesses based on the results obtained in chemostat cultures. Interestingly, continuous cultivation is also currently emerging as an alternative operational mode in industrial biotechnology for implementing continuous process operations.

11.
Microb Biotechnol ; 13(2): 315-327, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31657146

RESUMEN

Its features as a microbial and eukaryotic organism have turned Komagataella phaffii (Pichia pastoris) into an emerging cell factory for recombinant protein production (RPP). As a key step of the bioprocess development, this work aimed to demonstrate the importance of tailor designing the cultivation strategy according to the production kinetics of the cell factory. For this purpose, K. phaffii clones constitutively expressing (PGAP ) Candida rugosa lipase 1 (Crl1) with different gene dosage were used as models in continuous and fed-batch cultures. Production parameters were much greater with a multicopy clone (MCC) than with the single-copy clone (SCC). Regarding production kinetics, the specific product generation rate (qP ) increased linearly with increasing specific growth rate (µ) in SCC; by contrast, qP exhibited saturation in MCC. A transcriptional analysis in chemostat cultures suggested the presence of eventual post-transcriptional bottlenecks in MCC. After the strain characterization, in order to fulfil overall development of the bioprocess, the performance of both clones was also evaluated in fed-batch mode. Strikingly, different optimal strategies were determined for both models due to the different production kinetic patterns observed as a trade-off for product titre, yields and productivity. The combined effect of gene dosage and adequate µ enables rational process development with a view to optimize K. phaffii RPP bioprocesses.


Asunto(s)
Pichia , Dosificación de Gen , Pichia/genética , Proteínas Recombinantes/genética , Saccharomycetales
12.
N Biotechnol ; 53: 24-34, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31195158

RESUMEN

The increasing demand for recombinant proteins for a wide range of applications, from biopharmaceutical protein complexes to industrial enzymes, is leading to important growth in this market. Among the different efficient host organism alternatives commonly used for protein production, the yeast Pichia pastoris (Komagataella phaffii) is currently considered to be one of the most effective and versatile expression platforms. The promising features of this cell factory are giving rise to interesting studies covering the different aspects that contribute to improving the bioprocess efficiency, from strain engineering to bioprocess engineering. The numerous drawbacks of using methanol in industrial processes are driving interest towards methanol-free alternatives, among which the GAP promoter-based systems stand out. The aim of this work is to present the most promising innovative developments in operational strategies based on rational approaches through bioprocess engineering tools. This rational design should be based on physiological characterization of the producing strains under bioprocess conditions and its interrelation with specific rates. This review focuses on understanding the key factors that can enhance recombinant protein production in Pichia pastoris; they are the basis for a further discussion on future industrial applications with the aim of developing scalable alternative strategies that maximize yields and productivity.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Ingeniería Metabólica , Pichia/metabolismo , Pichia/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química
13.
Artículo en Inglés | MEDLINE | ID: mdl-26284241

RESUMEN

The most commonly used cell disruption procedures may present lack of reproducibility, which introduces significant errors in the quantification of intracellular components. In this work, an approach consisting in the definition of an overall key performance indicator (KPI) was implemented for a lab scale high-pressure homogenizer (HPH) in order to determine the disruption settings that allow the reliable quantification of a wide sort of intracellular components. This innovative KPI was based on the combination of three independent reporting indicators: decrease of absorbance, release of total protein, and release of alkaline phosphatase activity. The yeast Pichia pastoris growing on methanol was selected as model microorganism due to it presents an important widening of the cell wall needing more severe methods and operating conditions than Escherichia coli and Saccharomyces cerevisiae. From the outcome of the reporting indicators, the cell disruption efficiency achieved using HPH was about fourfold higher than other lab standard cell disruption methodologies, such bead milling cell permeabilization. This approach was also applied to a pilot plant scale HPH validating the methodology in a scale-up of the disruption process. This innovative non-complex approach developed to evaluate the efficacy of a disruption procedure or equipment can be easily applied to optimize the most common disruption processes, in order to reach not only reliable quantification but also recovery of intracellular components from cell factories of interest.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA