Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cereb Cortex ; 31(4): 2187-2204, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33264389

RESUMEN

Dopamine receptors play an important role in motivational, emotional, and motor responses. In addition, growing evidence suggests a key role of hippocampal dopamine receptors in learning and memory. It is well known that associative learning and synaptic plasticity of CA3-CA1 requires the dopamine D1 receptor (D1R). However, the specific role of the dopamine D2 receptor (D2R) on memory-related neuroplasticity processes is still undefined. Here, by using two models of D2R loss, D2R knockout mice (Drd2-/-) and mice with intrahippocampal injections of Drd2-small interfering RNA (Drd2-siRNA), we aimed to investigate how D2R is involved in learning and memory as well as in long-term potentiation of the hippocampus. Our studies revealed that the genetic inactivation of D2R impaired the spatial memory, associative learning, and the classical conditioning of eyelid responses. Similarly, deletion of D2R reduced the activity-dependent synaptic plasticity in the hippocampal CA1-CA3 synapse. Our results demonstrate the first direct evidence that D2R is essential in behaving mice for trace eye blink conditioning and associated changes in hippocampal synaptic strength. Taken together, these results indicate a key role of D2R in regulating hippocampal plasticity changes and, in consequence, acquisition and consolidation of spatial and associative forms of memory.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Región CA3 Hipocampal/metabolismo , Plasticidad Neuronal/fisiología , Receptores de Dopamina D2/deficiencia , Memoria Espacial/fisiología , Sinapsis/metabolismo , Animales , Reacción de Prevención/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Interferente Pequeño/administración & dosificación , Receptores de Dopamina D2/genética , Sinapsis/genética
2.
Mov Disord ; 36(5): 1070-1085, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33219714

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disease where dopaminergic neurons in the substantia nigra are lost, resulting in a decrease in striatal dopamine and, consequently, motor control. Dopaminergic degeneration is associated with the appearance of Lewy bodies, which contain membrane structures and proteins, including α-synuclein (α-Syn), in surviving neurons. PD displays a multifactorial pathology and develops from interactions between multiple elements, such as age, environmental conditions, and genetics. Mutations in the GBA1 gene represent one of the major genetic risk factors for PD. This gene encodes an essential lysosomal enzyme called ß-glucocerebrosidase (GCase), which is responsible for degrading the glycolipid glucocerebroside into glucose and ceramide. GCase can generate glucosylated cholesterol via transglucosylation and can also degrade the sterol glucoside. Although the molecular mechanisms that predispose an individual to neurodegeneration remain unknown, the role of cholesterol in PD pathology deserves consideration. Disturbed cellular cholesterol metabolism, as reflected by accumulation of lysosomal cholesterol in GBA1-associated PD cellular models, could contribute to changes in lipid rafts, which are necessary for synaptic localization and vesicle cycling and modulation of synaptic integrity. α-Syn has been implicated in the regulation of neuronal cholesterol, and cholesterol facilitates interactions between α-Syn oligomers. In this review, we integrate the results of previous studies and describe the cholesterol landscape in cellular homeostasis and neuronal function. We discuss its implication in α-Syn and Lewy body pathophysiological mechanisms underlying PD, focusing on the role of GCase and cholesterol. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Colesterol , Glucosilceramidasa/genética , Humanos , Cuerpos de Lewy , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética
3.
Addict Biol ; 26(1): e12840, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31833146

RESUMEN

Repeated cocaine exposure causes long-lasting neuroadaptations that involve alterations in cellular signaling and gene expression mediated by dopamine in different brain regions, such as the striatum. Previous studies have pointed out to the dopamine D1 receptor as one major player in psychostimulants-induced behavioral, cellular, and molecular changes. However, the role of other dopamine receptors has not been fully characterized. Here we used dopamine D2 receptor knockout (D2-/- ) mice to explore the role of D2 receptor (D2R) in behavioral sensitization and its associated gene expression after acute and chronic cocaine and amphetamine administration. We also studied the impact of D2R elimination in D1R-mediated responses. We found that cocaine- and amphetamine-induced behavioral sensitization is deficient in D2-/- mice. The expression of dynorphin, primarily regulated by D1R and a marker of direct-pathway striatal neurons, is attenuated in naïve- and in cocaine- or amphetamine-treated D2-/- mice. Moreover, c-Fos expression observed in D2-/- mice was reduced in acutely but not in chronically treated animals. Interestingly, inactivation of D2R increased c-Fos expression in neurons of the striatopallidal pathway. Finally, elimination of D2R blunted the locomotor and striatal c-Fos response to the full D1 agonist SKF81297. In conclusion, D2R is critical for the development of behavioral sensitization and the associated gene expression, after cocaine administration, and it is required for the locomotor responses promoted by D1R activation.


Asunto(s)
Estimulantes del Sistema Nervioso Central/farmacología , Cocaína/farmacología , Receptores de Dopamina D2/metabolismo , Anfetaminas/farmacología , Animales , Benzazepinas , Cuerpo Estriado/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Ratones , Ratones Noqueados , Neuronas/metabolismo , Receptores de Dopamina D1/metabolismo
4.
Neurobiol Dis ; 102: 133-139, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28315782

RESUMEN

Catechol-O-methyltransferase (COMT) degrades dopamine and its precursor l-DOPA and plays a critical role in regulating synaptic dopamine actions. We investigated the effects of heightened levels of COMT on dopamine-regulated motor behaviors and molecular alterations in a mouse model of dyskinesia. Transgenic mice overexpressing human COMT (TG) and their wildtype (WT) littermates received unilateral 6-OHDA lesions in the dorsal striatum and were treated chronically with l-DOPA for two weeks. l-DOPA-induced dyskinesia was exacerbated in TG mice without altering l-DOPA motor efficacy as determined by contralateral rotations or motor coordination. Inductions of FosB and phospho-acetylated histone 3 (molecular correlates of dyskinesia) were potentiated in the lesioned striatum of TG mice compared with their WT littermates. The TG mice had lower basal levels of dopamine in the striatum. In mice with lesions, l-DOPA induces a greater increase in the dopamine metabolite 3-methoxytyramine in the lesioned striatum of dyskinetic TG mice than in WT mice. The levels of serotonin and its metabolite were similar in TG and WT mice. Our results demonstrate that human COMT overexpression confers a heightened susceptibility to l-DOPA-induced dyskinesia and alters molecular and neurochemical responses in the lesioned striatum of mice.


Asunto(s)
Antiparkinsonianos/toxicidad , Catecol O-Metiltransferasa/metabolismo , Discinesia Inducida por Medicamentos/metabolismo , Levodopa/toxicidad , Animales , Antiparkinsonianos/farmacología , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Catecol O-Metiltransferasa/genética , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Dopamina/metabolismo , Humanos , Levodopa/farmacología , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología , Oxidopamina , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Serotonina/metabolismo , Tiorredoxina Reductasa 2/genética , Tiorredoxina Reductasa 2/metabolismo
5.
Mov Disord ; 32(10): 1409-1422, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28779532

RESUMEN

BACKGROUND: Heterozygous mutations in the GBA1 gene, which encodes the lysosomal enzyme ß-glucocerebrosidase-1, increase the risk of developing Parkinson's disease, although the underlying mechanisms remain unclear. The aim of this study was to explore the impact of the N370S-GBA1 mutation on cellular homeostasis and vulnerability in a patient-specific cellular model of PD. METHODS: We isolated fibroblasts from 4 PD patients carrying the N370S/wild type GBA1 mutation and 6 controls to study the autophagy-lysosome pathway, endoplasmic reticulum stress, and Golgi apparatus structure by Western blot, immunofluorescence, LysoTracker and Filipin stainings, mRNA analysis, and electron microscopy. We evaluated cell vulnerability by apoptosis, reactive oxygen species and mitochondrial membrane potential with flow cytometry. RESULTS: The N370S mutation produced a significant reduction in ß-glucocerebrosidase-1 protein and enzyme activity and ß-glucocerebrosidase-1 retention within the endoplasmic reticulum, which interrupted its traffic to the lysosome. This led to endoplasmic reticulum stress activation and triggered unfolded protein response and Golgi apparatus fragmentation. Furthermore, these alterations resulted in autophagosome and p62/SQSTM1 accumulation. This impaired autophagy was a result of dysfunctional lysosomes, indicated by multilamellar body accumulation probably caused by increased cholesterol, enlarged lysosomal mass, and reduced enzyme activity. This phenotype impaired the removal of damaged mitochondria and reactive oxygen species production and enhanced cell death. CONCLUSIONS: Our results support a connection between the loss of ß-glucocerebrosidase-1 function, cholesterol accumulation, and the disruption of cellular homeostasis in GBA1-PD. Our work reveals new insights into the cellular pathways underlying PD pathogenesis, providing evidence that GBA1-PD shares common features with lipid-storage diseases. © 2017 International Parkinson and Movement Disorder Society.


Asunto(s)
Colesterol/metabolismo , Glucosilceramidasa/genética , Lisosomas/metabolismo , Mutación/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Asparagina/genética , Autofagia/genética , Beclina-1/metabolismo , Calnexina/metabolismo , Calnexina/ultraestructura , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Femenino , Fibroblastos/patología , Fibroblastos/ultraestructura , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Humanos , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/ultraestructura , Masculino , Modelos Biológicos , Estrés Oxidativo/genética , Enfermedad de Parkinson/patología , Serina/genética , Serina-Treonina Quinasas TOR/metabolismo , Factor de Transcripción CHOP/metabolismo
6.
Biochem J ; 450(1): 199-208, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23181698

RESUMEN

During embryonic development, the aristaless-type homeodomain protein Alx3 is expressed in the forehead mesenchyme and contributes to the regulation of craniofacial development. In the adult, Alx3 is expressed in pancreatic islets where it participates in the control of glucose homoeostasis. In the present study, we investigated the transcriptional regulation of Alx3 gene expression in these two cell types. We found that the Alx3 promoter contains two E-box regulatory elements, named EB1 and EB2, that provide binding sites for the basic helix-loop-helix transcription factors Twist1, E47, USF (upstream stimulatory factor) 1 and USF2. In primary mouse embryonic mesenchymal cells isolated from the forehead, EB2 is bound by Twist1, whereas EB1 is bound by USF1 and USF2. Integrity of both EB1 and EB2 is required for Twist1-mediated transactivation of the Alx3 promoter, even though Twist1 does not bind to EB1, indicating that binding of USF1 and USF2 to this element is required for Twist1-dependent Alx3 promoter activity. In contrast, in pancreatic islet insulin-producing cells, the integrity of EB2 is not required for proximal promoter activity. The results of the present study indicate that USF1 and USF2 are important regulatory factors for Alx3 gene expression in different cell types, whereas Twist1 contributes to transcriptional transactivation in mesenchymal, but not in pancreatic, cells.


Asunto(s)
Proteínas de Homeodominio/genética , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Proteína 1 Relacionada con Twist/genética , Factores Estimuladores hacia 5'/genética , Animales , Sitios de Unión , Células COS , Línea Celular , Chlorocebus aethiops , Embrión de Mamíferos/metabolismo , Femenino , Células Secretoras de Glucagón/metabolismo , Células HeLa , Proteínas de Homeodominio/metabolismo , Humanos , Mesodermo/metabolismo , Ratones , Células 3T3 NIH , Proteínas Nucleares/metabolismo , Embarazo , Proteína 1 Relacionada con Twist/metabolismo , Factores Estimuladores hacia 5'/metabolismo
8.
Front Aging Neurosci ; 15: 1087072, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37455931

RESUMEN

Introduction: Alzheimer's disease remains the most common neurodegenerative disorder, depicted mainly by memory loss and the presence in the brain of senile plaques and neurofibrillary tangles. This disease is related to several cellular alterations like the loss of synapses, neuronal death, disruption of lipid homeostasis, mitochondrial fragmentation, or raised oxidative stress. Notably, changes in the autophagic pathway have turned out to be a key factor in the early development of the disease. The aim of this research is to determine the impact of the APOE allele ε4 and G206D-PSEN1 on the underlying mechanisms of Alzheimer's disease. Methods: Fibroblasts from Alzheimer's patients with APOE 3/4 + G206D-PSEN1 mutation and homozygous APOE ε4 were used to study the effects of APOE polymorphism and PSEN1 mutation on the autophagy pathway, mitochondrial network fragmentation, superoxide anion levels, lysosome clustering, and p62/SQSTM1 levels. Results: We observed that the APOE allele ε4 in homozygosis induces mitochondrial network fragmentation that correlates with an increased colocalization with p62/SQSTM1, probably due to an inefficient autophagy. Moreover, G206D-PSEN1 mutation causes an impairment of the integrity of mitochondrial networks, triggering high superoxide anion levels and thus making APOE 3/4 + PSEN1 fibroblasts more vulnerable to cell death induced by oxidative stress. Of note, PSEN1 mutation induces accumulation and clustering of lysosomes that, along with an increase of global p62/SQSTM1, could compromise lysosomal function and, ultimately, its degradation. Conclusion: The findings suggest that all these modifications could eventually contribute to the neuronal degeneration that underlies the pathogenesis of Alzheimer's disease. Further research in this area may help to develop targeted therapies for the treatment of Alzheimer's disease.

9.
Front Public Health ; 11: 1039688, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36817923

RESUMEN

Background: Personalized medicine (PM) is now the new frontier in patient care. The application of this new paradigm extends to various pathologies and different patient care phases, such as diagnosis and treatment. Translating biotechnological advances to clinical routine means adapting health services at all levels is necessary. Purpose: This article aims to identify the elements for devising a framework that will allow the level of PM implementation in the country under study to be quantitatively and qualitatively assessed and that can be used as a guideline for future implementation plans. Methods: A systematic review was conducted per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The research question was: What are the domains for determining the level of implementation of PM at the national level? The domains for assessing the degree of PM implementation, which would form the framework, were established. Results: 19 full-text studies that met the inclusion criteria were peer-selected in the systematic review. From all the studies that were included, 37 elements-encompassed in 11 domains-were extracted for determining the degree of PM implementation. These domains and their constituent elements comprise the qualitative and quantitative assessment framework presented herein. Each of the elements can be assessed individually. On the other hand, the domains were standardized to all have the same weight in an overall assessment. Conclusions: A framework has been developed that takes a multi-factorial approach to determine the degree of implementation of PM at the national level. This framework could also be used to rank countries and their implementation strategies according to the score they receive in the application of the latter. It could also be used as a guide for developing future national PM implementation strategies. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022338611, Identifier: CRD42022338611.


Asunto(s)
Biotecnología , Medicina de Precisión , Humanos , Grupo Paritario
10.
Dev Biol ; 344(2): 869-80, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20534379

RESUMEN

Neural tube closure defects are among the most frequent congenital malformations in humans. Supplemental maternal intake of folic acid before and during pregnancy reduces their incidence significantly, but the mechanism underlying this preventive effect is unknown. As a number of genes that cause neural tube closure defects encode transcriptional regulators in mice, one possibility is that folic acid could induce the expression of transcription factors to compensate for the primary genetic defect. We report that folic acid is required in mouse embryos for the specific expression of the homeodomain gene Alx3 in the head mesenchyme, an important tissue for cranial neural tube closure. Alx3-deficient mice exhibit increased failure of cranial neural tube closure and increased cell death in the craniofacial region, two effects that are also observed in wild type embryos developing in the absence of folic acid. Folic acid cannot prevent these defects in Alx3-deficient embryos, indicating that one mechanism of folic acid action is through induced expression of Alx3. Thus, Alx3 emerges as a candidate gene for human neural tube defects and reveals the existence of induced transcription factor gene expression as a previously unknown mechanism by which folic acid prevents neural tube closure defects.


Asunto(s)
Ácido Fólico/metabolismo , Defectos del Tubo Neural/genética , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos , Femenino , Ácido Fólico/genética , Ácido Fólico/farmacología , Genotipo , Hematínicos , Mesodermo/metabolismo , Ratones , Defectos del Tubo Neural/prevención & control , Neurulación , Embarazo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Front Pharmacol ; 11: 356, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32390826

RESUMEN

Alpha-synuclein (α-Syn) is a key protein involved in Parkinson's disease (PD) pathology. PD is characterized by the loss of dopaminergic neuronal cells in the substantia nigra pars compacta and the abnormal accumulation and aggregation of α-Syn in the form of Lewy bodies and Lewy neurites. More precisely, the aggregation of α-Syn is associated with the dysfunctionality and degeneration of neurons in PD. Moreover, mutations in the SNCA gene, which encodes α-Syn, cause familial forms of PD and are the basis of sporadic PD risk. Given the role of the α-Syn protein in the pathology of PD, animal models that reflect the dopaminergic neuronal loss and the widespread and progressive formation of α-Syn aggregates in different areas of the brain constitute a valuable tool. Indeed, animal models of PD are important for understanding the molecular mechanisms of the disease and might contribute to the development and validation of new therapies. In the absence of animal models that faithfully reproduce human PD, in recent years, numerous animal models of PD based on α-Syn have been generated. In this review, we summarize the main features of the α-Syn pre-formed fibrils (PFFs) model and recombinant adeno-associated virus vector (rAAV) mediated α-Syn overexpression models, providing a detailed comparative analysis of both models. Here, we discuss how each model has contributed to our understanding of PD pathology and the advantages and weakness of each of them. SIGNIFICANCE: Here, we show that injection of α-Syn PFFs and overexpression of α-Syn mediated by rAAV lead to a different pattern of PD pathology in rodents. First, α-Syn PFFs models trigger the Lewy body-like inclusions formation in brain regions directly interconnected with the injection site, suggesting that there is an inter-neuronal transmission of the α-Syn pathology. In contrast, rAAV-mediated α-Syn overexpression in the brain limits the α-Syn aggregates within the transduced neurons. Second, phosphorylated α-Syn inclusions obtained with rAAV are predominantly nuclear with a punctate appearance that becomes diffuse along the neuronal fibers, whereas α-Syn PFFs models lead to the formation of cytoplasmic aggregates of phosphorylated α-Syn reminiscent of Lewy bodies and Lewy neurites.

12.
Autophagy ; 14(4): 717-718, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29368986

RESUMEN

Lipid and cholesterol metabolism might play a role in the pathogenesis of Parkinson disease (PD). However, the association between cholesterol and PD is not clearly established. Cholesterol accumulation is closely related to the expression of multilamellar bodies (MLBs). Also, cholesterol controls autophagosome transport. Thus, impaired cholesterol and autophagosome trafficking might lead to robust autophagic vacuole accumulation. Our recent work provides the first evidence that the presence of the N370S GBA mutation produces an accumulation of cholesterol, which alters autophagy-lysosome function with the appearance of MLBs, rendering the cell more vulnerable and sensitive to apoptosis.


Asunto(s)
Autofagia/genética , Lisosomas/metabolismo , Mutación/genética , Enfermedad de Parkinson/genética , Autofagosomas/metabolismo , Colesterol/metabolismo , Glucosilceramidasa/metabolismo , Humanos , Metabolismo de los Lípidos/genética , Lisosomas/genética , Enfermedad de Parkinson/patología
13.
Sci Rep ; 7(1): 389, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28341857

RESUMEN

Oxidative stress constitutes a major cause for increased risk of congenital malformations associated to severe hyperglycaemia during pregnancy. Mutations in the gene encoding the transcription factor ALX3 cause congenital craniofacial and neural tube defects. Since oxidative stress and lack of ALX3 favour excessive embryonic apoptosis, we investigated whether ALX3-deficiency further increases the risk of embryonic damage during gestational hyperglycaemia in mice. We found that congenital malformations associated to ALX3-deficiency are enhanced in diabetic pregnancies. Increased expression of genes encoding oxidative stress-scavenging enzymes in embryos from diabetic mothers was blunted in the absence of ALX3, leading to increased oxidative stress. Levels of ALX3 increased in response to glucose, but ALX3 did not activate oxidative stress defence genes directly. Instead, ALX3 stimulated the transcription of Foxo1, a master regulator of oxidative stress-scavenging genes, by binding to a newly identified binding site located in the Foxo1 promoter. Our data identify ALX3 as an important component of the defence mechanisms against the occurrence of developmental malformations during diabetic gestations, stimulating the expression of oxidative stress-scavenging genes in a glucose-dependent manner via Foxo1 activation. Thus, ALX3 deficiency provides a novel molecular mechanism for developmental defects arising from maternal hyperglycaemia.


Asunto(s)
Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Glucosa/metabolismo , Proteínas de Homeodominio/metabolismo , Hiperglucemia/metabolismo , Estrés Oxidativo , Embarazo en Diabéticas/metabolismo , Animales , Desarrollo Embrionario , Femenino , Regulación del Desarrollo de la Expresión Génica , Glucosa/administración & dosificación , Proteínas de Homeodominio/genética , Hiperglucemia/complicaciones , Hiperglucemia/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Embarazo en Diabéticas/genética
14.
Neurotox Res ; 30(1): 67-75, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26966009

RESUMEN

Perturbations in the cerebral levels of various amino acids are associated with neurological disorders, and previous studies have suggested that such alterations have a role in the motor and non-motor symptoms of Parkinson's disease. However, the direct effects of chronic L-DOPA treatment, that produces dyskinesia, on neural tissue amino acid concentrations have not been explored in detail. To evaluate whether striatal amino acid concentrations are altered in peak dose dyskinesia, 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian mice were treated chronically with L-DOPA and tissue amino acid concentrations were assessed by HPLC analysis. These experiments revealed that neither 6-OHDA nor L-DOPA treatment are able to alter glutamate in the striatum. However, glutamine increases after 6-OHDA and returns back to normal levels with L-DOPA treatment, suggesting increased striatal glutamatergic transmission with lack of dopamine. In addition, glycine and taurine levels are increased following dopamine denervation and restored to normal levels by L-DOPA. Interestingly, dyskinetic animals showed increased levels of GABA and tyrosine, while aspartate striatal tissue levels are not altered. Overall, our results indicate that chronic L-DOPA treatment, besides normalizing the altered levels of some amino acids after 6-OHDA, robustly increases striatal GABA and tyrosine levels which may in turn contribute to the development of L-DOPA-induced dyskinesia.


Asunto(s)
Aminoácidos/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Dopamina/deficiencia , Levodopa/farmacología , Tirosina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Ácido Aspártico/metabolismo , Discinesia Inducida por Medicamentos/metabolismo , Miembro Anterior/efectos de los fármacos , Ácido Glutámico/metabolismo , Glicina/metabolismo , Ratones , Oxidopamina/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante , Taurina/metabolismo
15.
Neurotox Res ; 30(1): 14-31, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26678495

RESUMEN

NURR1 is an essential transcription factor for the differentiation, maturation, and maintenance of midbrain dopaminergic neurons (DA neurons) as it has been demonstrated using knock-out mice. DA neurons of the substantia nigra pars compacta degenerate in Parkinson's disease (PD) and mutations in the Nurr1 gene have been associated with this human disease. Thus, the study of NURR1 actions in vivo is fundamental to understand the mechanisms of neuron generation and degeneration in the dopaminergic system. Here, we present and discuss findings indicating that NURR1 is a valuable molecular tool for the in vitro generation of DA neurons which could be used for modeling and studying PD in cell culture and in transplantation approaches. Transduction of Nurr1 alone or in combination with other transcription factors such as Foxa2, Ngn2, Ascl1, and Pitx3, induces the generation of DA neurons, which upon transplantation have the capacity to survive and restore motor behavior in animal models of PD. We show that the survival of transplanted neurons is increased when the Nurr1-transduced olfactory bulb stem cells are treated with GDNF. The use of these and other factors with the induced pluripotent stem cell (iPSC)-based technology or the direct reprogramming of astrocytes or fibroblasts into human DA neurons has produced encouraging results for the study of the cellular and molecular mechanisms of neurodegeneration in PD and for the search of new treatments for this disease.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Neurogénesis/fisiología , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/fisiología , Animales , Células Cultivadas , Humanos , Ratones Noqueados , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/biosíntesis , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Bulbo Olfatorio/citología , Trasplante de Células Madre/métodos , Células Madre/fisiología , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/fisiología
16.
PLoS One ; 8(11): e80902, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24312250

RESUMEN

Adenosine A2A receptors (A2AR) are located postsynaptically in striatopallidal GABAergic neurons, antagonizing dopamine D2 receptor functions, and are also located presynaptically at corticostriatal terminals, facilitating glutamate release. To address the hypothesis that these two A2AR populations differently control the action of psychostimulants, we characterized A2AR modulation of cocaine-induced effects at the level of DARPP-32 phosphorylation at Thr-34 and Thr-75, c-Fos expression, and psychomotor activity using two lines of cell-type selective A2AR knockout (KO) mice with selective A2AR deletion in GABAergic neurons (striatum-A2AR-KO mice), or with A2AR deletion in both striatal GABAergic neurons and projecting cortical glutamatergic neurons (forebrain-A2AR-KO mice). We demonstrated that striatum-A2AR KO mice lacked A2ARs exclusively in striatal GABAergic terminals whereas forebrain-A2AR KO mice lacked A2ARs in both striatal GABAergic and glutamatergic terminals leading to a blunted A2AR-mediated facilitation of synaptosomal glutamate release. The inactivation of A2ARs in GABAergic neurons reduced striatal DARPP-32 phosphorylation at Thr-34 and increased its phosphorylation at Thr-75. Conversely, the additional deletion of corticostriatal glutamatergic A2ARs produced opposite effects on DARPP-32 phosphorylation at Thr-34 and Thr-75. This distinct modulation of DARPP-32 phosphorylation was associated with opposite responses to cocaine-induced striatal c-Fos expression and psychomotor activity in striatum-A2AR KO (enhanced) and forebrain-A2AR KO mice (reduced). Thus, A2ARs in glutamatergic corticostriatal terminals and in GABAergic striatal neurons modulate the action of psychostimulants and DARPP-32 phosphorylation in opposite ways. We conclude that A2ARs in glutamatergic terminals prominently control the action of psychostimulants and define a novel mechanism by which A2ARs fine-tune striatal activity by integrating GABAergic, dopaminergic and glutamatergic signaling.


Asunto(s)
Cuerpo Estriado/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Neuronas GABAérgicas/metabolismo , Ácido Glutámico/metabolismo , Receptor de Adenosina A2A/metabolismo , Animales , Cocaína/farmacología , Cuerpo Estriado/efectos de los fármacos , Expresión Génica , Ratones , Ratones Noqueados , Fosforilación , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Desempeño Psicomotor , Receptor de Adenosina A2A/genética , Sinaptosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA