Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Adv Mater ; 36(1): e2305937, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37689973

RESUMEN

Oral delivery, while a highly desirable form of nanoparticle-drug administration, is limited by challenges associated with overcoming several biological barriers. Here, the authors study how fluorescent and poly(ethylene glycol)-coated (PEGylated) core-shell silica nanoparticles sized 5 to 50 nm interact with major barriers including intestinal mucus, intestinal epithelium, and stomach acid. From imaging fluorescence correlation spectroscopy studies using quasi-total internal reflection fluorescence microscopy, diffusion of nanoparticles through highly scattering mucus is progressively hindered above a critical hydrodynamic size around 20 nm. By studying Caco-2 cell monolayers mimicking the intestinal epithelia, it is observed that ultrasmall nanoparticles below 10 nm diameter (Cornell prime dots, [C' dots]) show permeabilities correlated with high absorption in humans from primarily enhanced passive passage through tight junctions. Particles above 20 nm diameter exclusively show active transport through cells. After establishing C' dot stability in artificial gastric juice, in vivo oral gavage experiments in mice demonstrate successful passage through the body followed by renal clearance without protein corona formation. Results suggest C' dots as viable candidates for oral administration to patients with a proven pathway towards clinical translation and may generate renewed interest in examining silica as a food additive and its effects on nutrition and health.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Humanos , Ratas , Ratones , Animales , Portadores de Fármacos/química , Células CACO-2 , Ratas Sprague-Dawley , Dióxido de Silicio/química , Nanopartículas/química
2.
ACS Nano ; 16(12): 20021-20033, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36264003

RESUMEN

To address the key challenges in the development of next-generation drug delivery systems (DDS) with desired physicochemical properties to overcome limitations regarding safety, in vivo efficacy, and solid tumor penetration, an ultrasmall folate receptor alpha (FRα) targeted silica nanoparticle (C'Dot) drug conjugate (CDC; or folic acid CDC) was developed. A broad array of methods was employed to screen a panel of CDCs and identify a lead folic acid CDC for clinical development. These included comparing the performance against antibody-drug conjugates (ADCs) in three-dimensional tumor spheroid penetration ability, assessing in vitro/ex vivo cytotoxic efficacy, as well as in vivo therapeutic outcome in multiple cell-line-derived and patient-derived xenograft models. An ultrasmall folic acid CDC, EC112002, was identified as the lead candidate out of >500 folic acid CDC formulations evaluated. Systematic studies demonstrated that the lead formulation, EC112002, exhibited highly specific FRα targeting, multivalent binding properties that would mediate the ability to outcompete endogenous folate in vivo, enzymatic responsive payload cleavage, stability in human plasma, rapid in vivo clearance, and minimal normal organ retention organ distribution in non-tumor-bearing mice. When compared with an anti-FRα-DM4 ADC, EC112002 demonstrated deeper penetration into 3D cell-line-derived tumor spheroids and superior specific cytotoxicity in a panel of 3D patient-derived tumor spheroids, as well as enhanced efficacy in cell-line-derived and patient-derived in vivo tumor xenograft models expressing a range of low to high levels of FRα. With the growing interest in developing clinically translatable, safe, and efficacious DDSs, EC112002 has the potential to address some of the critical limitations of the current systemic drug delivery for cancer management.


Asunto(s)
Receptor 1 de Folato , Sistema de Administración de Fármacos con Nanopartículas , Neoplasias , Animales , Humanos , Ratones , Línea Celular Tumoral , Modelos Animales de Enfermedad , Receptor 1 de Folato/metabolismo , Receptor 1 de Folato/uso terapéutico , Ácido Fólico/química , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Dióxido de Silicio/uso terapéutico
3.
Chem Mater ; 31(3): 643-657, 2019 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-30886456

RESUMEN

Small-angle X-ray scattering (SAXS) was performed on dispersions of ultrasmall (d < 10 nm) fluorescent organic-inorganic hybrid core-shell silica nanoparticles synthesized in aqueous solutions (C' dots) by using an oscillating flow cell to overcome beam induced particle degradation. Form factor analysis and fitting was used to determine the size and size dispersity of the internal silica core containing covalently encapsulated fluorophores. The structure of the organic poly(ethylene glycol) (PEG) shell was modelled as a monodisperse corona containing concentrated and semi-dilute regimes of decaying density and as a simple polydisperse shell to determine the bounds of dispersity in the overall hybrid particle. C' dots containing single growth step silica cores have dispersities of 0.19-0.21; growth of additional silica shells onto the core produces a thin, dense silica layer, and increases the dispersity to 0.22-0.23. Comparison to FCS and DLS measures of size shows good agreement with SAXS measured and modelled sizes and size dispersities. Finally, comparison of a set of same sized and purified particles demonstrates that SAXS is sensitive to the skewness of the gel permeation chromatography elugrams of the original as-made materials. These and other insights provided by quantitative SAXS assessments may become useful for generation of robust nanoparticle design criteria necessary for their successful and safe use, for example in nanomedicine and oncology applications.

4.
ACS Nano ; 13(2): 1795-1804, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30629425

RESUMEN

In contrast to small-molar-mass compounds, detailed structural investigations of inorganic core-organic ligand shell hybrid nanoparticles remain challenging. The assessment of batch-reaction-induced heterogeneities of surface chemical properties and their correlation with particle size has been a particularly long-standing issue. Applying a combination of high-performance liquid chromatography (HPLC) and gel permeation chromatography (GPC) to ultra-small (<10 nm diameter) poly(ethylene glycol)-coated (PEGylated) fluorescent core-shell silica nanoparticles, we elucidate here previously unknown surface heterogeneities resulting from varying dye conjugation to nanoparticle silica cores and surfaces. Heterogeneities are predominantly governed by dye charge, as corroborated by molecular dynamics simulations. We demonstrate that this insight enables the development of synthesis protocols to achieve PEGylated and targeting ligand-functionalized PEGylated silica nanoparticles with dramatically improved surface chemical homogeneity, as evidenced by single-peak HPLC chromatograms. Because surface chemical properties are key to all nanoparticle interactions, we expect these methods and fundamental insights to become relevant to a number of systems for applications, including bioimaging and nanomedicine.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Nanomedicina/métodos , Nanopartículas/química , Dióxido de Silicio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA