Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Xray Sci Technol ; 26(5): 707-726, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29991154

RESUMEN

BACKGROUND: X-ray CT/micro-CT methods with photon-counting detectors (PCDs) and high Z materials are a hot research topic. One method using PCDs allows for spectral imaging in 5 energy windows while conventional X-ray detectors only collect energy-integrating data. OBJECTIVE: To demonstrate the enhanced separation of contrast materials by using PCDs, multivariate analysis, and linear discriminant methods. METHODS: Phantoms containing iodine and aqueous nanomaterials were scanned on a MARS spectral micro-CT. Image volumes were segmented into separate material-specific populations. Contrast comparisons were made by calculating T2 test statistics in the univariate, pseudo-conventional and multivariate, spectral CT data sets. Separability after Fisher discriminant analysis (FDA) was also assessed. RESULTS: The T2 values calculated for material comparisons increased as a result of the spectral expansion. The majority of the tested contrast agents showed increased T2 values by a factor of ∼2 -3. The total significant T2 statistics in the pure and mixed lanthanide image sets increased in the spectral data set. CONCLUSION: This work consolidates the groundwork for photon-counting-based material decomposition with micro-CT, facilitating future development of novel nanomaterials and their preclinical applications.


Asunto(s)
Nanopartículas/química , Microtomografía por Rayos X/instrumentación , Microtomografía por Rayos X/métodos , Algoritmos , Medios de Contraste , Diseño de Equipo , Yodo , Fantasmas de Imagen , Fotones
2.
Nanomaterials (Basel) ; 9(8)2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31366080

RESUMEN

Lanthanide-based nanophosphors (NPhs) are herein developed as contrast agents for spectral X-ray imaging, highlighting the chemical, macromolecular and structural differences derived from ligand exchange on computed tomography (CT) and solvent dispersibility. Taking advantage of the ability of spectral X-ray imaging with photon-counting detectors to perform image acquisition, analysis, and processing at different energy windows (bins), enhanced signal of our K-edge materials was derived, improving sensitivity of CT imaging, and differentiation between water, tumor-mimic phantoms, and contrast materials. Our results indicate that the most effective of our oleic acid-stabilized K-edge nanoparticles can achieve 2-4x higher contrast than the examined iodinated molecules, making them suitable for deep tissue imaging of tissues or tumors. On the other hand, ligand exchange yielding poly(acrylic acid)-stabilized K-edge nanoparticles allows for high dispersibility and homogeneity in water, but with a lower contrast due to the high density of the polymer grafted, unless further engineering is probed. This is the first well-defined study that manages to correlate NPh grafting density with CT numbers and water dispersibility, laying the groundwork for the development of the next generation CT-guided diagnostic and/or theranostic materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA