Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Rev Med Virol ; 34(3): e2541, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38743385

RESUMEN

As the mankind counters the ongoing COVID-19 pandemic by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), it simultaneously witnesses the emergence of mpox virus (MPXV) that signals at global spread and could potentially lead to another pandemic. Although MPXV has existed for more than 50 years now with most of the human cases being reported from the endemic West and Central African regions, the disease is recently being reported in non-endemic regions too that affect more than 50 countries. Controlling the spread of MPXV is important due to its potential danger of a global spread, causing severe morbidity and mortality. The article highlights the transmission dynamics, zoonosis potential, complication and mitigation strategies for MPXV infection, and concludes with suggested 'one health' approach for better management, control and prevention. Bibliometric analyses of the data extend the understanding and provide leads on the research trends, the global spread, and the need to revamp the critical research and healthcare interventions. Globally published mpox-related literature does not align well with endemic areas/regions of occurrence which should ideally have been the scenario. Such demographic and geographic gaps between the location of the research work and the endemic epicentres of the disease need to be bridged for greater and effective translation of the research outputs to pubic healthcare systems, it is suggested.


Asunto(s)
Bibliometría , Humanos , Brotes de Enfermedades/prevención & control , Animales , Mpox/epidemiología , Mpox/transmisión , Mpox/prevención & control , Mpox/virología , COVID-19/transmisión , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/virología , SARS-CoV-2 , Zoonosis/epidemiología , Zoonosis/virología , Zoonosis/transmisión , Zoonosis/prevención & control , Pandemias/prevención & control
2.
Mol Divers ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652365

RESUMEN

Monkeypox virus (MPXV) core cysteine proteinase (CCP) is one of the major drug targets used to examine the inhibitory action of chemical moieties. In this study, an in silico technique was applied to screen 1395 anti-infective compounds to find out the potential molecules against the MPXV-CCP. The top five hits were selected after screening and processed for exhaustive docking based on the docked score of ≤ -9.5 kcal/mol. Later, the top three hits based on the exhaustive-docking score and interaction profile were selected to perform MD simulations. The overall RMSD suggested that two compounds, SC75741 and ammonium glycyrrhizinate, showed a highly stable complex with a standard deviation of 0.18 and 0.23 nm, respectively. Later, the MM/GBSA binding free energies of complexes showed significant binding strength with ΔGTOTAL from -21.59 to -15 kcal/mol. This report reported the potential inhibitory activity of SC75741 and ammonium glycyrrhizinate against MPXV-CCP by competitively inhibiting the binding of the native substrate.

3.
Mol Divers ; 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37531040

RESUMEN

One of the emerging epidemic concerns is Monkeypox disease which is spreading globally. This disease is caused by the monkeypox virus (MPXV), with an increasing global incidence with an outbreak in 2022. One of the novel targets for monkeypox disease is thymidylate kinase, which is involved in pyrimidine metabolism. In this study, docking-based virtual screening and molecular dynamics techniques were employed in addition to the machine learning (ML) model to investigate the potential anti-viral natural small compounds to inhibit thymidylate kinase of MPXV. Several potential hits were identified through high-throughput virtual screening, and further top three candidates were selected, which ranked using the ML model. These three compounds were then examined under molecular dynamics simulation and MM/GBSA-binding free energy analysis. Among these, Chlorhexidine HCl showed high potential for binding to the thymidylate kinase with stable and consistent conformation with RMSD < 0.3 nm. The MM/GBSA analysis also showed the minimum binding free energy (ΔGTOTAL) of -62.41 kcal/mol for this compound. Overall, this study used structure-based drug design complemented by machine learning-guided ligand-based drug design to screen potential hit compounds from the anti-viral natural compound database.

4.
Mol Divers ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37925643

RESUMEN

Marburg virus disease (MVD) is caused by the Marburg virus, a one-of-a-kind zoonotic RNA virus from the genus Filovirus. Thus, this current study employed AI-based QSAR and molecular docking-based virtual screening for identifying potential binders against the target protein (nucleoprotein (NP)) of the Marburg virus. A total of 2727 phytochemicals were used for screening, out of which the top three compounds (74977521, 90470472, and 11953909) were identified based on their predicted bioactivity (pIC50) and binding score (< - 7.4 kcal/mol). Later, MD simulation in triplicates and trajectory analysis were performed which showed that 11953909 and 74977521 had the most stable and consistent complex formations and had the most significant interactions with the highest number of hydrogen bonds. PCA (principal component analysis) and FEL (free energy landscape) analysis indicated that these compounds had favourable energy states for most of the conformations. The total binding free energy of the compounds using the MM/GBSA technique showed that 11953909 (ΔGTOTAL = - 30.78 kcal/mol) and 74977521 (ΔGTOTAL = - 30 kcal/mol) had the highest binding affinity with the protein. Overall, this in silico pipeline proposed that the phytochemicals 11953909 and 74977521 could be the possible binders of NP. This study aimed to find phytochemicals inhibiting the protein's function and potentially treating MVD.

5.
Mol Divers ; 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964456

RESUMEN

Tuberculosis (TB), an infectious disease caused by the Mycobacterium tuberculosis (Mtb), has been responsible for the deaths of millions of individuals around the globe. A vital protein in viral pathogenesis known as resuscitation promoting factor (RpfB) has been identified as a potential therapeutic target of anti-tuberculosis drugs. This study offered an in silico process to examine possible RpfB inhibitors employing a computational drug design pipeline. In this study, a total of 1228 phytomolecules were virtually tested against the RpfB of Mtb. These phytomolecules were sourced from the NP-lib database of the MTi-OpenScreen server, and five top hits (ZINC000044404209, ZINC000059779788, ZINC000001562130, ZINC000014766825, and ZINC000043552589) were prioritized for compute intensive docking with dock score ≤ - 8.5 kcal/mole. Later, molecular dynamics (MD) simulation and principal component analysis (PCA) were used to validate these top five hits. In the list of these top five hits, the ligands ZINC000044404209, ZINC000059779788, and ZINC000043552589 showed hydrogen bond formation with the functional residue Glu292 of the RpfB protein suggesting biological significance of the binding. The RMSD study showed stable protein-ligand complexes and higher conformational consistency for the ligands ZINC000014766825, and ZINC000043552589 with RMSD 3-4 Å during 100 ns MD simulation. The overall analysis performed in the study suggested promising binding of these compounds with the RpfB protein of the Mtb at its functional site, further experimental investigation is needed to validate the computational finding.

6.
Mol Divers ; 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37578620

RESUMEN

Tuberculosis (TB) is a global burden to humanity due to its adverse effects on health and society since time is not clearly defined. The existence of drug-resistant strains and the potential threat posed by latent tuberculosis act as strong impetuses for developing novel anti-tuberculosis drugs. In this study, various flavonoids were tested against the Mycobacterium tuberculosis (Mtb) Isocitrate Lyase (ICL), which has been identified as an authorised therapeutic target for treating Mtb infection. Using in silico drug discovery approach, a library of 241 flavonoid compounds was virtually screened against the binding pocket of the crystalline ligand, the VGX inhibitor, in the Mtb ICL protein. As a result, the top four flavonoids were selected based on binding score and were further considered for redocking and intermolecular contact profiling analysis. The global and local fluctuations in the protein and ligand structure were analysed using their root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values obtained from the GROMACS generated 100 ns molecular dynamics (MD) simulation trajectories. The end-state binding free energy was also calculated using the MMPBSA approach for all the respective docked complexes. All four selected compounds exhibited considerable stability and affinity compared to control ligands, i.e. VGX inhibitor; however, Vaccarin showed the highest stability and affinity against the Mtb ICL protein active site, followed by the Genistin, Glabridin, and Corylin. Therefore, this study recommends selected flavonoids for in vitro and in vivo experimental studies to check their potency and efficacy against Mtb.

7.
Global Health ; 19(1): 9, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36747262

RESUMEN

BACKGROUND: ASEAN (Association of Southeast Asian Nations) is composed of ten Southeast Asian countries bound by socio-cultural ties that promote regional peace and stability. South Asia, located in the southern subregion of Asia, includes nine countries sharing similarities in geographical and ethno-cultural factors. Chikungunya is one of the most significant problems in Southeast and South Asian countries. Much of the current chikungunya epidemic in Southeast Asia is caused by the emergence of a virus strain that originated in Africa and spread to Southeast Asia. Meanwhile, in South Asia, three confirmed lineages are in circulation. Given the positive correlation between research activity and the improvement of the clinical framework of biomedical research, this article aimed to examine the growth of chikungunya virus-related research in ASEAN and South Asian countries. METHODS: The Scopus database was used for this bibliometric analysis. The retrieved publications were subjected to a number of analyses, including those for the most prolific countries, journals, authors, institutions, and articles. Co-occurrence mapping of terms and keywords was used to determine the current state, emerging topics, and future prospects of chikungunya virus-related research. Bibliometrix and VOSviewer were used to analyze the data and visualize the collaboration network mapping. RESULTS: The Scopus search engine identified 1280 chikungunya-related documents published by ASEAN and South Asian countries between 1967 and 2022. According to our findings, India was the most productive country in South Asia, and Thailand was the most productive country in Southeast Asia. In the early stages of the study, researchers investigated the vectors and outbreaks of the chikungunya virus. In recent years, the development of antivirus agents has emerged as a prominent topic. CONCLUSIONS: Our study is the first to present the growth of chikungunya virus-related research in ASEAN and South Asian countries from 1967 to 2022. In this study, the evaluation of the comprehensive profile of research on chikungunya can serve as a guide for future studies. In addition, a bibliometric analysis may serve as a resource for healthcare policymakers.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Humanos , Fiebre Chikungunya/epidemiología , Asia Sudoriental/epidemiología , Tailandia , Bibliometría , India
8.
Medicina (Kaunas) ; 59(2)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36837503

RESUMEN

Background and Objectives: Periodontitis is a chronic multifactorial inflammatory infectious disease marked by continuous degradation of teeth and surrounding parts. One of the most important periodontal pathogens is P. intermedia, and with its interpain A proteinase, it leads to an increase in lethal infection. Materials and Methods: The current study was designed to create a multi-epitope vaccine using an immunoinformatics method that targets the interpain A of P. intermedia. For the development of vaccines, P. intermedia peptides InpA were found appropriate. To create a multi-epitope vaccination design, interpain A, B, and T-cell epitopes were found and assessed depending on the essential variables. The vaccine construct was evaluated based on its stability, antigenicity, and allergenicity. Results: The vaccine construct reached a more significant population and was able to bind to both the binding epitopes of major histocompatibility complex (MHC)-I and MHC-II. Through the C3 receptor complex route, P. intermedia InpA promotes an immunological subunit. Utilizing InpA-C3 and vaccination epitopes as the receptor and ligand, the molecular docking and dynamics were performed using the ClusPro 2.0 server. Conclusion: The developed vaccine had shown good antigenicity, solubility, and stability. Molecular docking indicated the vaccine's 3D structure interacts strongly with the complement C3. The current study describes the design for vaccine, and steady interaction with the C3 immunological receptor to induce a good memory and an adaptive immune response against Interpain A of P. intermedia.


Asunto(s)
Vacunas , Humanos , Simulación del Acoplamiento Molecular , Prevotella intermedia , Epítopos de Linfocito T
9.
Medicina (Kaunas) ; 59(2)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36837545

RESUMEN

Background and Objectives: The BaeR protein is involved in the adaptation system of A. baumannii and is associated with virulence factors responsible for systemic infections in hospitalized patients. This study was conducted to characterize putative epitope peptides for the design of vaccines against BaeR protein, using an immune-informatic approach. Materials and Methods: FASTA sequences of BaeR from five different strains of A. baumannii were retrieved from the UNIPROT database and evaluated for their antigenicity, allergenicity and vaccine properties using BepiPred, Vaxijen, AlgPred, AntigenPro and SolPro. Their physio-chemical properties were assessed using the Expasy Protparam server. Immuno-dominant B-cell and T-cell epitope peptides were predicted using the IEDB database and MHC cluster server with a final assessment of their interactions with TLR-2. Results: A final selection of two peptide sequences (36aa and 22aa) was made from the 38 antigenic peptides. E1 was considered a soluble, non-allergenic antigen, and possessed negative GRAVY values, substantiating the hydrophilic nature of the proteins. Further analysis on the T-cell epitopes, class I immunogenicity and HLA allele frequencies yielded T-cell immuno-dominant peptides. The protein-peptide interactions of the TLR-2 receptor showed good similarity scores in terms of the high number of hydrogen bonds compared to other protein-peptide interactions. Conclusions: The two epitopes predicted from BaeR in the present investigation are promising vaccine candidates for targeting the TCS of A. baumannii in systemic and nosocomial infections. This study also demonstrates an alternative strategy to tackling and mitigating MDR strains of A. baumannii and provides a useful reference for the design and construction of novel vaccine candidates against this bacteria.


Asunto(s)
Acinetobacter baumannii , Humanos , Receptor Toll-Like 2 , Péptidos/química , Epítopos de Linfocito T , Secuencia de Aminoácidos
10.
Infection ; 50(6): 1431-1439, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35294728

RESUMEN

INTRODUCTION: Recent studies investigated the endurance of symptoms and occurrence of complications three months after SARS-CoV-2 infection. This study aims to examine the prevalence, variation, and severity of continual symptoms in the post-COVID-19 using a single-center questionnaire. METHODS: The questionnaire was distributed among population in Saudi Arabia who recovered from COVID-19 between April 1, 2020 and December 31, 2021. RESULTS: A total of 744 participants completed the questionnaire, 318 (42.8%) recovered less than 3 months, 75 (10.1%) recovered 3-6 months, while 351 (47.2%) recovered more than 6 months. About half of the participants 353 (47.5%) had incessant symptoms and of those patients, more than half had two or more symptoms. Common symptoms included fatigue 189 (25.4%), headache 118 (15.9%), and myalgia 63 (8.5%). Of the participants, 189 (21.4%) experienced continual symptoms including anxiety in 98 (13.2%) and depression in 70 (9.5%). CONCLUSION: The current study showed a high proportion of individuals with long-COVID-19 symptoms. Thus, proper assessment of the individuals in the post-recovery period can guide the patients to the relevant clinics for rehabilitation. Moreover, there is a great importance to decrease COVID-19 infection, populations should be targeted to boost vaccine efficiency.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Arabia Saudita/epidemiología , Ansiedad/epidemiología , Síndrome Post Agudo de COVID-19
11.
Medicina (Kaunas) ; 58(5)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35630096

RESUMEN

Measles is an RNA virus infectious disease mainly seen in children. Despite the availability of an effective vaccine against measles, it remains a health issue in children. Although it is a self-limiting disease, it becomes severe in undernourished and immune-compromised individuals. Measles infection is associated with secondary infections by opportunistic bacteria due to the immunosuppressive effects of the measles virus. Recent reports highlight that measles infection erases the already existing immune memory of various pathogens. This review covers the incidence, pathogenesis, measles variants, clinical presentations, secondary infections, elimination of measles virus on a global scale, and especially the immune responses related to measles infection.


Asunto(s)
Coinfección , Sarampión , Niño , Humanos , Incidencia , Sarampión/epidemiología , Sarampión/prevención & control
12.
Medicina (Kaunas) ; 59(1)2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36676716

RESUMEN

The Human Immunodeficiency Virus (HIV) is a highly morphic, retrovirus that rapidly evolves through mutation as well as recombination. Because of the immunocompromised status in HIV patients, there is often a higher chance of acquiring different secondary infections followed by liver cirrhosis, hepatitis B & C, and HIV-associated nephropathy. The current study was conducted to see the prevalence of secondary infections, hematological and biochemical markers for liver and renal associated diseases, and to detect the envelope gene (GP41) in newly diagnosed HIV patients. A total of 37 samples were collected from HIV-positive patients registered in different hospital settings under the National AIDS control program. The collected samples were processed for hepatitis B, hepatitis C, hematological analysis, and biochemical analysis. To identify the envelope gene in newly diagnosed HIV patients, polymerase chain reaction (PCR) was performed using four gene-specific primers. The HIV infections were seen more in male as compared to females. A significant decrease in complete blood count was observed in HIV patients when compared to healthy individuals. There was a significant increase in aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea, and creatinine observed in HIV patients. No significant difference was observed in alkaline phosphatase (ALP), total bilirubin, and albumin levels when compared to healthy control. Anemia was observed in 59.4% of HIV patients. A total of three (8.1%) patients were found to be co-infected with hepatitis B and one (2.7 %) was co-infected with hepatitis C. Out of these 37 tested samples, a total of four showed the successful amplification of the envelope gene. This study provides platform for the health care facilitators to regularly monitor the signs, symptoms and clinical biomarkers of HIV-associated infections to prevent toxicity at an early stage to improve the quality of life (QoL) and minimize the mortality rate in HIV patients. Envelope gene mutating frequently results in drug resistance, and thus future research on polymorphism analysis will reveal points of substitutions to improve drug designing.


Asunto(s)
Coinfección , Infecciones por VIH , Hepatitis B , Hepatitis C , Femenino , Humanos , Masculino , Infecciones por VIH/complicaciones , Infecciones por VIH/epidemiología , VIH , Calidad de Vida , Coinfección/epidemiología , Hepatitis B/complicaciones , Hepatitis B/epidemiología , Hepatitis C/complicaciones , Hepacivirus/genética , Prevalencia , Biomarcadores
13.
Medicina (Kaunas) ; 58(11)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36422214

RESUMEN

Improper use of antimicrobials has resulted in the emergence of antimicrobial resistance (AMR), including multi-drug resistance (MDR) among bacteria. Recently, a sudden increase in Carbapenem-resistant Enterobacterales (CRE) has been observed. This presents a substantial challenge in the treatment of CRE-infected individuals. Bacterial plasmids include the genes for carbapenem resistance, which can also spread to other bacteria to make them resistant. The incidence of CRE is rising significantly despite the efforts of health authorities, clinicians, and scientists. Many genotypic and phenotypic techniques are available to identify CRE. However, effective identification requires the integration of two or more methods. Whole genome sequencing (WGS), an advanced molecular approach, helps identify new strains of CRE and screening of the patient population; however, WGS is challenging to apply in clinical settings due to the complexity and high expense involved with this technique. The current review highlights the molecular mechanism of development of Carbapenem resistance, the epidemiology of CRE infections, spread of CRE, treatment options, and the phenotypic/genotypic characterisation of CRE. The potential of microorganisms to acquire resistance against Carbapenems remains high, which can lead to even more susceptible drugs such as colistin and polymyxins. Hence, the current study recommends running the antibiotic stewardship programs at an institutional level to control the use of antibiotics and to reduce the spread of CRE worldwide.


Asunto(s)
Programas de Optimización del Uso de los Antimicrobianos , Carbapenémicos , Humanos , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Genotipo , Colistina , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
14.
Cent Eur J Public Health ; 26(2): 87-91, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30102495

RESUMEN

OBJECTIVE: The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a novel coronavirus circulating in the Arabian Peninsula since September 2012. It leads to significant respiratory disease and among patients with co-morbidities is associated with high mortality. This research studied the mortality rate of MERS-CoV among intensive care unit (ICU) patients and the correlation of mortality with different co-morbidities. METHODS: This was a retrospective observational study conducted at the Intensive Care Unit of the King Fahad Hospital, Jeddah, Saudi Arabia. Data was obtained through patient chart review. RESULTS: The total sample consisted of 52 laboratory-confirmed MERS-CoV infection patients. 39 patients died, with a 75% case-fatality rate. Many patients had underlying co-morbidities, including diabetes mellitus (51.9%), hypertension (46.2%), and chronic renal disease (21.2%). CONCLUSIONS: MERS-CoV ICU mortality remains markedly high due to a combination of factors; the disease process of MERS-CoV leads to multiple organ failure, particularly respiratory and renal failure.


Asunto(s)
Infecciones por Coronavirus/mortalidad , Infecciones por Coronavirus/virología , Unidades de Cuidados Intensivos/estadística & datos numéricos , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Comorbilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Riesgo , Arabia Saudita/epidemiología
15.
Emerg Infect Dis ; 22(5): 794-801, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27089550

RESUMEN

During March-May 2014, a Middle East respiratory syndrome (MERS) outbreak occurred in Jeddah, Saudi Arabia, that included many persons who worked or received medical treatment at King Fahd General Hospital. We investigated 78 persons who had laboratory-confirmed MERS during March 2-May 10 and documented contact at this hospital. The 78 persons with MERS comprised 53 patients, 16 healthcare workers, and 9 visitors. Among the 53 patients, the most probable sites of acquisition were the emergency department (22 patients), inpatient areas (17), dialysis unit (11), and outpatient areas (3). Infection control deficiencies included limited separation of suspected MERS patients, patient crowding, and inconsistent use of infection control precautions; aggressive improvements in these deficiencies preceded a decline in cases. MERS coronavirus transmission probably was multifocal, occurring in multiple hospital settings. Continued vigilance and strict application of infection control precautions are necessary to prevent future MERS outbreaks.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Infección Hospitalaria , Brotes de Enfermedades , Coronavirus del Síndrome Respiratorio de Oriente Medio , Centros de Atención Terciaria , Adulto , Anciano , Estudios de Cohortes , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/tratamiento farmacológico , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Arabia Saudita/epidemiología
16.
J Biomol Struct Dyn ; 42(4): 1711-1724, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37325855

RESUMEN

Zika virus (ZIKV) spread is considered a major public health threat by the World Health Organization (WHO). There are no vaccines or drugs available to control the infection of the Zika virus, therefore a highly effective medicinal molecule is urgently required. In this study, a computationally intensive investigation was performed to identify a potent natural compound that could inhibit the ZIKV NS5 methyltransferase. This research approach is based on target-based drug identification principles where the native inhibitor SAH (S-adenosylhomocysteine) of ZIKV NS5 methyltransferase was selected as a reference. High-throughput virtual screening and tanimoto similarity coefficient were applied to the natural compound library for ranking the potential candidates. The top five compounds were selected for interaction analysis, MD simulation, total binding free energy through MM/GBSA, and steered MD simulation. Among these compounds, Adenosine 5'-monophosphate monohydrate, Tubercidin, and 5-Iodotubercidin showed stable binding to the protein compared to the native compound, SAH. These three compounds also showed less fluctuations in RMSF in contrast to native compound. Additionally, the same interacting residues observed in SAH also made strong interactions with these three compounds. Adenosine 5'-monophosphate monohydrate and 5-Iodotubercidin had greater total binding free energies than the reference ligand. Moreover, the dissociation resistance of all three compounds was equivalent to that of the reference ligand. This study suggested binding properties of three-hit compounds that could be used to develop drugs against Zika virus infections.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Simulación de Dinámica Molecular , Ligandos , Proteínas no Estructurales Virales/química , Adenosina , Metiltransferasas/química , Transferasas/metabolismo , Transferasas/farmacología , Simulación del Acoplamiento Molecular , Antivirales/farmacología , Antivirales/química
17.
J Biomol Struct Dyn ; : 1-17, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634700

RESUMEN

In response to the escalating threat of drug-resistant fungi to human health, there is an urgent need for innovative strategies. Our focus is on addressing this challenge by exploring a previously untapped target, yeast casein kinase (Yck2), as a potential space for antifungal development. To identify promising antifungal candidates, we conducted a thorough screening of the diverse-lib drug-like molecule library, comprising 99,288 molecules. Five notable drug-like compounds with diverse-lib IDs 24334243, 24342416, 17516746, 17407455, and 24360740 were selected based on their binding energy scores surpassing 11 Kcal/mol. Our investigation delved into the interaction studies and dynamic stability of these compounds. Remarkably, all selected molecules demonstrated acceptable RMSD values during the 200 ns simulation, indicating their stable nature. Further analysis through Principal Component Analysis (PCA)-based Free Energy Landscape (FEL) revealed minimal energy transitions for most compounds, signifying dynamic stability. Notably, the two compounds exhibited slightly different behaviour in terms of energy transitions. These findings mark a significant breakthrough in the realm of antifungal drugs against C. albicans by targeting the Yck2 protein. However, it is crucial to note that additional experimental validation is imperative to assess the efficacy of these molecules as potential antifungal candidates. This study serves as a promising starting point for further exploration and development in the quest for effective antifungal solutions.Communicated by Ramaswamy H. Sarma.

18.
J Biomol Struct Dyn ; : 1-18, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441606

RESUMEN

Dengue fever, a major global health challenge, affects nearly half the world's population and lacks effective treatments or vaccines. Addressing this, our study focused on natural compounds that potentially inhibit the dengue virus's RNA-dependent RNA polymerase (RdRp), a crucial target in the viral replication cycle. Utilizing the MTiOpenScreen webserver, we screened 1226 natural compounds from the NP-lib database. This screening identified four promising compounds ZINC000059779788, ZINC0000044404209, ZINC0000253504517 and ZINC0000253499146), each demonstrating high negative binding energies between -10.4 and -9.9 kcal/mol, indicative of strong potential as RdRp inhibitors. These compounds underwent rigorous validation through re-docking and a detailed 100 ns molecular dynamics (MD) simulation. This analysis affirmed the dynamic stability of the protein-ligand complexes, a critical factor in the effectiveness of potential drug candidates. Additionally, we conducted essential dynamics and free energy landscape calculations to understand the structural transitions in the RdRp protein upon ligand binding, providing valuable insights into the mechanism of inhibition. Our findings present these natural molecules as promising therapeutic agents against the dengue virus. By targeting the allosteric site of RdRp, these compounds offer a novel approach to hinder the viral replication process. This research significantly contributes to the search for effective anti-dengue treatments, positioning natural compounds as potential key players in dengue virus control strategies.Communicated by Ramaswamy H. Sarma.

19.
J Biomol Struct Dyn ; 41(24): 15085-15105, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36883874

RESUMEN

RNA-dependent RNA polymerase, also known as RdRp, is a possible therapeutic target that could be used to suppress the proliferation of RNA viruses such as SARS-CoV-2. This protein has two major functional sites (a) catalytic and (b) substrate entry, which regulate the natural substrate entry and its corresponding interaction with the protein. In this study, a computational drug design pipeline was applied to investigate potential inhibitors against SARS-CoV-2 RdRp from Lauraceae plants, and five top hits were selected based on the docked score (< -7 kcal/mol). The docking study suggested that the Glochidioboside had a minimum binding score of -7.8 kcal/mol. This compound showed total five hydrogen bonds while two of them were with catalytic residues Asp618 and Asp760. However, another compound, Sitogluside showed a binding score of -7.3 kcal/mol with four hydrogen bonds targeting three functional residues (Arg555, Ser759, and Asp760). Later, 100 ns explicit solvent molecular dynamics (MD) simulation was performed to evaluate the stability of the protein-ligand docked system. These compounds translocated their positions from the catalytic site to the substrate entry site, as observed in the MD simulation trajectory. However, translocation did not affect the binding strength of these compounds, and they retained the strong binding affinity (ΔG < -11.5 kcal/mol), estimated using the MM/GBSA method. In general, the findings of this study indicated the potential therapeutic compounds that may be used targeting SARS-CoV-2 RdRp. However, these compounds still need to be validated by experimentation in order to determine their inhibitory function.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Lauraceae , ARN Viral , SARS-CoV-2 , ARN Polimerasa Dependiente del ARN , Simulación de Dinámica Molecular , Antivirales/farmacología , Simulación del Acoplamiento Molecular
20.
Antibiotics (Basel) ; 12(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36671350

RESUMEN

Enterobacteriaceae have been classified as severely drug resistant bacteria by the World Health Organization due to their extensive production and dissemination of carbapenemases (CPs) and extended-spectrum ß-lactamases (ESBL). The current study was conducted with the aim to determine the prevalence of CP- and ESBL-producing Enterobacteriaceae, as well as their antibiotic susceptibility profiles. For this, a hospital-based study was conducted which included 384 participants with bacterial infections. The collection and processing of specimens was conducted per standard microbiological protocol. The samples were inoculated on agar media plates to obtain the bacterial growths, and if they were positive for any bacterial growth, the antibiotic susceptibility testing was performed using disk diffusion method to check their antibiotic susceptibility patterns. The double disc diffusion as well as carbapenem inhibition techniques were used to examine the CP enzymes. Multiplex real-time PCR technique was performed to identify three distinct genetic types of CPs that have been identified in the Enterobacteriaceae (KPC, NDM, and OXA-48). A majority of participants (58.3%) in the current study were living in urban areas. A total of 227 (59.1%) patients were hospitalized. Furthermore, 26.04% of the patients were determined to be suffering from infections with Enterobacteriaceae. Escherichia coli was the most prevalent (9.1%) isolate overall, followed by Klebsiella pneumoniae (8.07%), Acinetobacter baumannii (2.6%), Pseudomonas aeruginosa (3.1%), Enterobacter cloacae (1.3%), Proteus spp. (1.3%), and Morganella spp. (0.5%). The studied patients were suffering from urinary tract infections (48.6%), blood stream infections (32.2%), wounds infection (11.9%), and respiratory infections (7.03%), confirmed with bacterial cultures. The resistance against carbapenems was seen in 31.4% of E. coli isolates, 25.8% in K. pneumoniae, 50% in P. aeruginosa, 25% in A. baumannii, and 20% in E. cloacae isolates. Such high rates of CP- and ESBL-producing Enterobacteriaceae are alarming, suggesting high spread in the study area. It is advised to implement better infection prevention and control strategies and conduct further nationwide screening of the carriers of these pathogens. This might help in reducing the burden of highly resistant bugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA