Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Genet Sel Evol ; 54(1): 72, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316629

RESUMEN

BACKGROUND: Single-step genomic best linear unbiased prediction (GBLUP) involves a joint analysis of individuals with genotype information, and their ancestors, descendants, or contemporaries, without recorded genotypes. Livestock applications typically represent populations with fewer individuals with genotypes relative to the number not genotyped. Most breeding programmes are structured, consisting of a nucleus tier in which selection drives genetic gains that are propagated through descendants that represent parents in multiplier and commercial tiers. In some cases, the genotypes in the nucleus tier are proprietary to a breeding company, and not publicly available for a whole industry analysis. Bayesian inference involves combining a defined description of prior information with new information to generate a posterior distribution that contains all available information on parameters of interest. A natural extension of Bayesian analysis would be to use information from the posterior distribution to define the prior distribution in a subsequent analysis. METHODS: We derive the mixed model equations for inference on breeding values for non genotyped individuals in that subset of the population that is of current interest, using only data on the performance of current individuals and their immediate pedigree, along with prior information defined from the posterior distribution of an external BLUP or single-step GBLUP analysis of the ancestors of the current population. DISCUSSION: Identical estimates of breeding values and their prediction error covariances for current animals of interest in the multiplier or commercial tier can be obtained without requiring neither the genomic relationship matrix nor genotypes of any of their ancestors in the nucleus tier, as can be obtained from a single analysis using pedigree, performance, and genomic information from all tiers. The Bayesian analysis of the current population does not require explicit information on unselected genotyped animals in the external population.


Asunto(s)
Genoma , Genómica , Animales , Teorema de Bayes , Genotipo , Genómica/métodos , Linaje , Modelos Genéticos , Fenotipo
2.
Genet Sel Evol ; 54(1): 5, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35073835

RESUMEN

BACKGROUND: Deleterious recessive conditions have been primarily studied in the context of Mendelian diseases. Recently, several deleterious recessive mutations with large effects were discovered via non-additive genome-wide association studies (GWAS) of quantitative growth and developmental traits in cattle, which showed that quantitative traits can be used as proxies of genetic disorders when such traits are indicative of whole-animal health status. We reasoned that lactation traits in cattle might also reflect genetic disorders, given the increased energy demands of lactation and the substantial stresses imposed on the animal. In this study, we screened more than 124,000 cows for recessive effects based on lactation traits. RESULTS: We discovered five novel quantitative trait loci (QTL) that are associated with large recessive impacts on three milk yield traits, with these loci presenting missense variants in the DOCK8, IL4R, KIAA0556, and SLC25A4 genes or premature stop variants in the ITGAL, LRCH4, and RBM34 genes, as candidate causal mutations. For two milk composition traits, we identified several previously reported additive QTL that display small dominance effects. By contrasting results from milk yield and milk composition phenotypes, we note differing genetic architectures. Compared to milk composition phenotypes, milk yield phenotypes had lower heritabilities and were associated with fewer additive QTL but had a higher non-additive genetic variance and were associated with a higher proportion of loci exhibiting dominance. CONCLUSIONS: We identified large-effect recessive QTL which are segregating at surprisingly high frequencies in cattle. We speculate that the differences in genetic architecture between milk yield and milk composition phenotypes derive from underlying dissimilarities in the cellular and molecular representation of these traits, with yield phenotypes acting as a better proxy of underlying biological disorders through presentation of a larger number of major recessive impacts.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Animales , Bovinos/genética , Femenino , Lactancia/genética , Leche , Fenotipo
3.
Vet Pathol ; 59(2): 310-318, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34974772

RESUMEN

Twelve cases of adult-onset blindness were identified in a flock of 130 polled Wiltshire sheep in New Zealand over a 3-year period. Affected sheep developed night blindness between 2 and 3 years of age, which progressed to complete blindness by 4 to 5 years of age. Fundic examination findings included progressive tapetal hyperreflectivity and attenuation of retinal blood vessels. Histologically, the retinas had a selective loss of rod photoreceptors with initial preservation of cone photoreceptors. Retinal degeneration was not accompanied by any other ocular or central nervous system abnormalities, and pedigree analysis suggested an inherited basis for the disease. Mating an affected Wiltshire ram to 2 affected Wiltshire ewes resulted in 6 progeny that all developed retinal degeneration by 2 years of age, while mating of the same affected ram to 6 unaffected ewes resulted in 8 unaffected progeny, consistent with autosomal recessive inheritance. Homozygosity mapping of 5 affected Wiltshire sheep and 1 unaffected Wiltshire sheep using an OvineSNP50 Genotyping BeadChip revealed an identical-by-descent region on chromosome 5, but none of the genes within this region were considered plausible candidate genes. Whole-genome sequencing of 2 affected sheep did not reveal any significant mutations in any of the genes associated with retinitis pigmentosa in humans or progressive retinal atrophy in dogs. Inherited progressive retinal degeneration affecting rod photoreceptors has not been previously reported in sheep, but this disease has several similarities to inherited retinal dystrophies in other species.


Asunto(s)
Ceguera Nocturna , Degeneración Retiniana , Retinitis Pigmentosa , Enfermedades de las Ovejas , Animales , Perros , Femenino , Masculino , Ceguera Nocturna/genética , Ceguera Nocturna/patología , Ceguera Nocturna/veterinaria , Linaje , Retina/patología , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Degeneración Retiniana/veterinaria , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Retinitis Pigmentosa/veterinaria , Ovinos , Enfermedades de las Ovejas/genética , Enfermedades de las Ovejas/patología
4.
Vet Pathol ; 59(3): 442-450, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35300540

RESUMEN

Charcot-Marie-Tooth disease (CMT) is a hereditary sensory and motor peripheral neuropathy that is one of the most common inherited neurological diseases of humans and may be caused by mutations in a number of different genes. The subtype Charcot-Marie-Tooth disease type 4H (CMT4H) is caused by homozygous mutations in the FGD4 (FYVE, RhoGEF, and PH domain-containing 4) gene. A previous genome-wide association study involving 130,783 dairy cows found 6 novel variants, one of which was a homozygous splice site mutation in the FGD4 gene. Descendants of carriers were genotyped to identify 9 homozygous Holstein Friesian calves that were raised to maturity, of which 5 were euthanized and sampled for histopathology and electron microscopy at 2 and 2.5 years of age. Three control Holstein Friesian animals were raised with the calves and euthanized at the same time points. No macroscopic lesions consistent with CMT4H were seen at necropsy. Microscopically, peripheral nerves were hypercellular due to hyperplasia of S100-positive Schwann cells, and there was onion bulb formation, axonal degeneration with demyelination, and increased thickness of the endoneurium. On electron microscopy, decreased axonal density, onion bulb formations, myelin outfoldings, and increased numbers of mitochondria were present. These changes are consistent with those described in mouse models and humans with CMT4H, making these cattle a potential large animal model for CMT.


Asunto(s)
Enfermedades de los Bovinos , Enfermedad de Charcot-Marie-Tooth , Animales , Bovinos , Enfermedades de los Bovinos/genética , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Enfermedad de Charcot-Marie-Tooth/veterinaria , Femenino , Estudio de Asociación del Genoma Completo/veterinaria , Proteínas de Microfilamentos , Mutación
5.
J Dairy Sci ; 105(12): 9763-9791, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36307235

RESUMEN

Fourier-transform mid-infrared (FT-MIR) spectroscopy is a high-throughput and inexpensive methodology used to evaluate concentrations of fat and protein in dairy cattle milk samples. The objective of this study was to compare the genetic characteristics of FT-MIR predicted fatty acids and individual milk proteins with those that had been measured directly using gas and liquid chromatography methods. The data used in this study was based on 2,005 milk samples collected from 706 Holstein-Friesian × Jersey animals that were managed in a seasonal, pasture-based dairy system, with milk samples collected across 2 consecutive seasons. Concentrations of fatty acids and protein fractions in milk samples were directly determined by gas chromatography and high-performance liquid chromatography, respectively. Models to predict each directly measured trait based on FT-MIR spectra were developed using partial least squares regression, with spectra from a random selection of half the cows used to train the models, and predictions for the remaining cows used as validation. Variance parameters for each trait and genetic correlations for each pair of measured/predicted traits were estimated from pedigree-based bivariate models using REML procedures. A genome-wide association study was undertaken using imputed whole-genome sequence, and quantitative trait loci (QTL) from directly measured traits were compared with QTL from the corresponding FT-MIR predicted traits. Cross-validation prediction accuracies based on partial least squares for individual and grouped fatty acids ranged from 0.18 to 0.65. Trait prediction accuracies in cross-validation for protein fractions were 0.53, 0.19, and 0.48 for α-casein, ß-casein, and κ-casein, 0.31 for α-lactalbumin, 0.68 for ß-lactoglobulin, and 0.36 for lactoferrin. Heritability estimates for directly measured traits ranged from 0.07 to 0.55 for fatty acids; and from 0.14 to 0.63 for individual milk proteins. For FT-MIR predicted traits, heritability estimates were mostly higher than for the corresponding measured traits, ranging from 0.14 to 0.46 for fatty acids, and from 0.30 to 0.70 for individual proteins. Genetic correlations between directly measured and FT-MIR predicted protein fractions were consistently above 0.75, with the exceptions of C18:0 and C18:3 cis-3, which had genetic correlations of 0.72 and 0.74, respectively. The GWAS identified trait QTL for fatty acids with likely candidates in the DGAT1, CCDC57, SCD, and GPAT4 genes. Notably, QTL for SCD were largely absent in the FT-MIR predicted traits, and QTL for GPAT4 were absent in directly measured traits. Similarly, for directly measured individual proteins, we identified QTL with likely candidates in the CSN1S1, CSN3, PAEP, and LTF genes, but the QTL for CSN3 and LTF were absent in the FT-MIR predicted traits. Our study indicates that genetic correlations between directly measured and FT-MIR predicted fatty acid and protein fractions are typically high, but that phenotypic variation in these traits may be underpinned by differing genetic architecture.


Asunto(s)
Ácidos Grasos , Estudio de Asociación del Genoma Completo , Femenino , Bovinos/genética , Animales , Ácidos Grasos/metabolismo , Estudio de Asociación del Genoma Completo/veterinaria , Leche/química , Proteínas de la Leche/análisis , Caseínas/análisis
6.
Genet Sel Evol ; 53(1): 62, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34284721

RESUMEN

BACKGROUND: Fourier-transform mid-infrared (FT-MIR) spectroscopy provides a high-throughput and inexpensive method for predicting milk composition and other novel traits from milk samples. While there have been many genome-wide association studies (GWAS) conducted on FT-MIR predicted traits, there have been few GWAS for individual FT-MIR wavenumbers. Using imputed whole-genome sequence for 38,085 mixed-breed New Zealand dairy cattle, we conducted GWAS on 895 individual FT-MIR wavenumber phenotypes, and assessed the value of these direct phenotypes for identifying candidate causal genes and variants, and improving our understanding of the physico-chemical properties of milk. RESULTS: Separate GWAS conducted for each of 895 individual FT-MIR wavenumber phenotypes, identified 450 1-Mbp genomic regions with significant FT-MIR wavenumber QTL, compared to 246 1-Mbp genomic regions with QTL identified for FT-MIR predicted milk composition traits. Use of mammary RNA-seq data and gene annotation information identified 38 co-localized and co-segregating expression QTL (eQTL), and 31 protein-sequence mutations for FT-MIR wavenumber phenotypes, the latter including a null mutation in the ABO gene that has a potential role in changing milk oligosaccharide profiles. For the candidate causative genes implicated in these analyses, we examined the strength of association between relevant loci and each wavenumber across the mid-infrared spectrum. This revealed shared association patterns for groups of genomically-distant loci, highlighting clusters of loci linked through their biological roles in lactation and their presumed impacts on the chemical composition of milk. CONCLUSIONS: This study demonstrates the utility of FT-MIR wavenumber phenotypes for improving our understanding of milk composition, presenting a larger number of QTL and putative causative genes and variants than found from FT-MIR predicted composition traits. Examining patterns of significance across the mid-infrared spectrum for loci of interest further highlighted commonalities of association, which likely reflects the physico-chemical properties of milk constituents.


Asunto(s)
Bovinos/genética , Leche/química , Sitios de Carácter Cuantitativo , Animales , Estudio de Asociación del Genoma Completo , Hibridación Genética , Leche/normas , Oligosacáridos/análisis , Espectroscopía Infrarroja por Transformada de Fourier
7.
BMC Genet ; 20(1): 83, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694549

RESUMEN

BACKGROUND: Feed efficiency and growth rate have been targets for selection to improve chicken production. The incorporation of genomic tools may help to accelerate selection. We genotyped 529 individuals using a high-density SNP chip (600 K, Affymetrix®) to estimate genomic heritability of performance traits and to identify genomic regions and their positional candidate genes associated with performance traits in a Brazilian F2 Chicken Resource population. Regions exhibiting selection signatures and a SNP dataset from resequencing were integrated with the genomic regions identified using the chip to refine the list of positional candidate genes and identify potential causative mutations. RESULTS: Feed intake (FI), feed conversion ratio (FC), feed efficiency (FE) and weight gain (WG) exhibited low genomic heritability values (i.e. from 0.0002 to 0.13), while body weight at hatch (BW1), 35 days-of-age (BW35), and 41 days-of-age (BW41) exhibited high genomic heritability values (i.e. from 0.60 to 0.73) in this F2 population. Twenty unique 1-Mb genomic windows were associated with BW1, BW35 or BW41, located on GGA1-4, 6-7, 10, 14, 24, 27 and 28. Thirty-eight positional candidate genes were identified within these windows, and three of them overlapped with selection signature regions. Thirteen predicted deleterious and three high impact sequence SNPs in these QTL regions were annotated in 11 positional candidate genes related to osteogenesis, skeletal muscle development, growth, energy metabolism and lipid metabolism, which may be associated with body weight in chickens. CONCLUSIONS: The use of a high-density SNP array to identify QTL which were integrated with whole genome sequence signatures of selection allowed the identification of candidate genes and candidate causal variants. One novel QTL was detected providing additional information to understand the genetic architecture of body weight traits. We identified QTL for body weight traits, which were also associated with fatness in the same population. Our findings form a basis for further functional studies to elucidate the role of specific genes in regulating body weight and fat deposition in chickens, generating useful information for poultry breeding programs.


Asunto(s)
Peso Corporal/genética , Estudio de Asociación del Genoma Completo/veterinaria , Músculo Esquelético/crecimiento & desarrollo , Carácter Cuantitativo Heredable , Alimentación Animal , Animales , Cruzamiento , Pollos , Metabolismo Energético , Femenino , Masculino , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Selección Genética , Secuenciación Completa del Genoma/veterinaria
8.
Vet Pathol ; 56(5): 743-748, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30983534

RESUMEN

A neurological disease was investigated in 3 German Shepherd pups from the same litter that failed to grow normally, appeared stiff, were reluctant to move, and were deaf. They developed intermittent seizures and ataxia and had proprioceptive defects. Histopathology showed severe vacuolation of neurons, astrocytes in nervous tissue, renal tubular epithelial cells, and macrophages in nervous tissue, spleen, and liver. Vacuoles appeared empty with no storage material stained by periodic acid-Schiff (PAS) or Sudan black stains, leading to a diagnosis of a lysosomal storage disease and in particular an oligosaccharidosis. Biochemical and genomic studies showed that this was ß-mannosidosis, not previously diagnosed in dogs. A c.560T>A transition in exon 4 of the MANBA gene was found, which segregated in these and other family members in a manner consistent with it being the causative mutation of an autosomal recessive disease. This mutation led to substitution of isoleucine to asparagine at position 187 of the 885 amino acid enzyme, a change expected to have functional significance.


Asunto(s)
Enfermedades de los Perros/patología , Predisposición Genética a la Enfermedad , beta-Manosidosis/veterinaria , Animales , Cerebro/patología , Enfermedades de los Perros/genética , Perros , Regulación Enzimológica de la Expresión Génica , Técnicas de Genotipaje , Masculino , Manosidasas/genética , Manosidasas/metabolismo , Mutación Missense , Secuenciación Completa del Genoma , beta-Manosidosis/genética , beta-Manosidosis/patología
9.
J Anim Breed Genet ; 136(2): 113-117, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30614572

RESUMEN

A curious result from mixed linear models applied to genome-wide association studies was expanded. In particular, a model in which one or more markers are considered as fixed but are allowed to contribute to the covariance structure by treating such markers as random as well was examined. The best linear unbiased estimator of marker effects is invariant with respect to whether those markers are employed in constructing a genomic relationship matrix or are ignored, provided marker effects are uncorrelated with those not being tested. Also, the implications of regarding some marker effects as fixed when, in fact, these possess a non-trivial covariance structure with those declared as random were examined.


Asunto(s)
Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Modelos Lineales , Modelos Genéticos , Modelos Estadísticos , Animales , Cruzamiento , Genoma/genética , Genómica , Polimorfismo de Nucleótido Simple
10.
BMC Genomics ; 18(1): 386, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28521758

RESUMEN

BACKGROUND: Single nucleotide polymorphism (SNP) arrays for domestic cattle have catalyzed the identification of genetic markers associated with complex traits for inclusion in modern breeding and selection programs. Using actual and imputed Illumina 778K genotypes for 3887 U.S. beef cattle from 3 populations (Angus, Hereford, SimAngus), we performed genome-wide association analyses for feed efficiency and growth traits including average daily gain (ADG), dry matter intake (DMI), mid-test metabolic weight (MMWT), and residual feed intake (RFI), with marker-based heritability estimates produced for all traits and populations. RESULTS: Moderate and/or large-effect QTL were detected for all traits in all populations, as jointly defined by the estimated proportion of variance explained (PVE) by marker effects (PVE ≥ 1.0%) and a nominal P-value threshold (P ≤ 5e-05). Lead SNPs with PVE ≥ 2.0% were considered putative evidence of large-effect QTL (n = 52), whereas those with PVE ≥ 1.0% but < 2.0% were considered putative evidence for moderate-effect QTL (n = 35). Identical or proximal lead SNPs associated with ADG, DMI, MMWT, and RFI collectively supported the potential for either pleiotropic QTL, or independent but proximal causal mutations for multiple traits within and between the analyzed populations. Marker-based heritability estimates for all investigated traits ranged from 0.18 to 0.60 using 778K genotypes, or from 0.17 to 0.57 using 50K genotypes (reduced from Illumina 778K HD to Illumina Bovine SNP50). An investigation to determine if QTL detected by 778K analysis could also be detected using 50K genotypes produced variable results, suggesting that 50K analyses were generally insufficient for QTL detection in these populations, and that relevant breeding or selection programs should be based on higher density analyses (imputed or directly ascertained). CONCLUSIONS: Fourteen moderate to large-effect QTL regions which ranged from being physically proximal (lead SNPs ≤ 3Mb) to fully overlapping for RFI, DMI, ADG, and MMWT were detected within and between populations, and included evidence for pleiotropy, proximal but independent causal mutations, and multi-breed QTL. Bovine positional candidate genes for these traits were functionally conserved across vertebrate species.


Asunto(s)
Alimentación Animal , Bovinos/crecimiento & desarrollo , Bovinos/genética , Estudio de Asociación del Genoma Completo , Animales , Peso Corporal/genética , Cruzamiento , Bovinos/metabolismo , Bovinos/fisiología , Ingestión de Alimentos/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Estados Unidos
11.
Mamm Genome ; 28(1-2): 47-55, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27770190

RESUMEN

British shorthair (BSH) kittens in multiple litters died as a result of a severe non-neoplastic lymphoproliferative disease that showed many similarities with human autoimmune lymphoproliferative syndrome (ALPS). Human ALPS is caused by inherited defects in FAS-mediated lymphocyte apoptosis and the possibility of similar defects was investigated in BSH cats. The whole genomes of two affected kittens were sequenced and compared to 82 existing cat genomes. Both BSH kittens had homozygous insertions of an adenine within exon 3 of the FAS-ligand gene. The resultant frameshift and premature stop codon were predicted to result in a severely truncated protein that is unlikely to be able to activate FAS. Three additional affected BSH kittens were homozygous for the variant, while 11 of 16 unaffected, but closely related, BSH cats were heterozygous for the variant. All BSH cats in the study were from a population with significant inbreeding. The variant was not identified in a further survey of 510 non-BSH cats. Identification of a genetic defect in the FAS-mediated apoptosis pathway confirms that the lymphoproliferative disease in BSH cats fulfills the diagnostic criteria for ALPS in humans. These results will enable the development of a genetic test to detect BSH carrier animals.


Asunto(s)
Apoptosis/genética , Síndrome Linfoproliferativo Autoinmune/genética , Proteína Ligando Fas/genética , Receptor fas/genética , Animales , Síndrome Linfoproliferativo Autoinmune/patología , Gatos , Codón sin Sentido/genética , Mutación del Sistema de Lectura/genética , Genoma , Humanos , Linfocitos/patología , Mutación , Secuenciación Completa del Genoma
12.
J Dairy Sci ; 100(12): 9623-9634, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28987572

RESUMEN

The objective of this study was to investigate different strategies for genotype imputation in a population of crossbred Girolando (Gyr × Holstein) dairy cattle. The data set consisted of 478 Girolando, 583 Gyr, and 1,198 Holstein sires genotyped at high density with the Illumina BovineHD (Illumina, San Diego, CA) panel, which includes ∼777K markers. The accuracy of imputation from low (20K) and medium densities (50K and 70K) to the HD panel density and from low to 50K density were investigated. Seven scenarios using different reference populations (RPop) considering Girolando, Gyr, and Holstein breeds separately or combinations of animals of these breeds were tested for imputing genotypes of 166 randomly chosen Girolando animals. The population genotype imputation were performed using FImpute. Imputation accuracy was measured as the correlation between observed and imputed genotypes (CORR) and also as the proportion of genotypes that were imputed correctly (CR). This is the first paper on imputation accuracy in a Girolando population. The sample-specific imputation accuracies ranged from 0.38 to 0.97 (CORR) and from 0.49 to 0.96 (CR) imputing from low and medium densities to HD, and 0.41 to 0.95 (CORR) and from 0.50 to 0.94 (CR) for imputation from 20K to 50K. The CORRanim exceeded 0.96 (for 50K and 70K panels) when only Girolando animals were included in RPop (S1). We found smaller CORRanim when Gyr (S2) was used instead of Holstein (S3) as RPop. The same behavior was observed between S4 (Gyr + Girolando) and S5 (Holstein + Girolando) because the target animals were more related to the Holstein population than to the Gyr population. The highest imputation accuracies were observed for scenarios including Girolando animals in the reference population, whereas using only Gyr animals resulted in low imputation accuracies, suggesting that the haplotypes segregating in the Girolando population had a greater effect on accuracy than the purebred haplotypes. All chromosomes had similar imputation accuracies (CORRsnp) within each scenario. Crossbred animals (Girolando) must be included in the reference population to provide the best imputation accuracies.


Asunto(s)
Bovinos/genética , Genotipo , Polimorfismo de Nucleótido Simple , Animales , Cruzamiento , Femenino , Haplotipos
13.
Genet Sel Evol ; 48(1): 80, 2016 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-27788669

RESUMEN

BACKGROUND: The mixed linear model employed for genomic best linear unbiased prediction (GBLUP) includes the breeding value for each animal as a random effect that has a mean of zero and a covariance matrix proportional to the genomic relationship matrix ([Formula: see text]), where the inverse of [Formula: see text] is required to set up the usual mixed model equations (MME). When only some animals have genomic information, genomic predictions can be obtained by an extension known as single-step GBLUP, where the covariance matrix of breeding values is constructed by combining the pedigree-based additive relationship matrix with [Formula: see text]. The inverse of the combined relationship matrix can be obtained efficiently, provided [Formula: see text] can be inverted. In some livestock species, however, the number [Formula: see text] of animals with genomic information exceeds the number of marker covariates used to compute [Formula: see text], and this results in a singular [Formula: see text]. For such a case, an efficient and exact method to obtain GBLUP and single-step GBLUP is presented here. RESULTS: Exact methods are already available to obtain GBLUP when [Formula: see text] is singular, but these require working with large dense matrices. Another approach is to modify [Formula: see text] to make it nonsingular by adding a small value to all its diagonals or regressing it towards the pedigree-based relationship matrix. This, however, results in the inverse of [Formula: see text] being dense and difficult to compute as [Formula: see text] grows. The approach presented here recognizes that the number r of linearly independent genomic breeding values cannot exceed the number of marker covariates, and the mixed linear model used here for genomic prediction only fits these r linearly independent breeding values as random effects. CONCLUSIONS: The exact method presented here was compared to Apy-GBLUP and to Apy single-step GBLUP, both of which are approximate methods that use a modified [Formula: see text] that has a sparse inverse which can be computed efficiently. In a small numerical example, predictions from the exact approach and Apy were almost identical, but the MME from Apy had a condition number about 1000 times larger than that from the exact approach, indicating ill-conditioning of the MME from Apy. The practical application of exact SSGBLUP is not more difficult than implementation of Apy.


Asunto(s)
Genómica/métodos , Modelos Lineales , Modelos Genéticos , Animales , Simulación por Computador , Genoma , Ganado/genética , Linaje , Selección Artificial/genética
14.
Genet Sel Evol ; 48(1): 96, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27931187

RESUMEN

BACKGROUND: Two types of models have been used for single-step genomic prediction and genome-wide association studies that include phenotypes from both genotyped animals and their non-genotyped relatives. The two types are breeding value models (BVM) that fit breeding values explicitly and marker effects models (MEM) that express the breeding values in terms of the effects of observed or imputed genotypes. MEM can accommodate a wider class of analyses, including variable selection or mixture model analyses. The order of the equations that need to be solved and the inverses required in their construction vary widely, and thus the computational effort required depends upon the size of the pedigree, the number of genotyped animals and the number of loci. THEORY: We present computational strategies to avoid storing large, dense blocks of the MME that involve imputed genotypes. Furthermore, we present a hybrid model that fits a MEM for animals with observed genotypes and a BVM for those without genotypes. The hybrid model is computationally attractive for pedigree files containing millions of animals with a large proportion of those being genotyped. APPLICATION: We demonstrate the practicality on both the original MEM and the hybrid model using real data with 6,179,960 animals in the pedigree with 4,934,101 phenotypes and 31,453 animals genotyped at 40,214 informative loci. To complete a single-trait analysis on a desk-top computer with four graphics cards required about 3 h using the hybrid model to obtain both preconditioned conjugate gradient solutions and 42,000 Markov chain Monte-Carlo (MCMC) samples of breeding values, which allowed making inferences from posterior means, variances and covariances. The MCMC sampling required one quarter of the effort when the hybrid model was used compared to the published MEM. CONCLUSIONS: We present a hybrid model that fits a MEM for animals with genotypes and a BVM for those without genotypes. Its practicality and considerable reduction in computing effort was demonstrated. This model can readily be extended to accommodate multiple traits, multiple breeds, maternal effects, and additional random effects such as polygenic residual effects.


Asunto(s)
Teorema de Bayes , Biología Computacional , Modelos Genéticos , Análisis de Regresión , Algoritmos , Animales , Simulación por Computador
15.
Genet Sel Evol ; 48: 22, 2016 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-26992471

RESUMEN

BACKGROUND: Genomic estimated breeding values (GEBV) based on single nucleotide polymorphism (SNP) genotypes are widely used in animal improvement programs. It is typically assumed that the larger the number of animals is in the training set, the higher is the prediction accuracy of GEBV. The aim of this study was to quantify genomic prediction accuracy depending on the number of ancestral generations included in the training set, and to determine the optimal number of training generations for different traits in an elite layer breeding line. METHODS: Phenotypic records for 16 traits on 17,793 birds were used. All parents and some selection candidates from nine non-overlapping generations were genotyped for 23,098 segregating SNPs. An animal model with pedigree relationships (PBLUP) and the BayesB genomic prediction model were applied to predict EBV or GEBV at each validation generation (progeny of the most recent training generation) based on varying numbers of immediately preceding ancestral generations. Prediction accuracy of EBV or GEBV was assessed as the correlation between EBV and phenotypes adjusted for fixed effects, divided by the square root of trait heritability. The optimal number of training generations that resulted in the greatest prediction accuracy of GEBV was determined for each trait. The relationship between optimal number of training generations and heritability was investigated. RESULTS: On average, accuracies were higher with the BayesB model than with PBLUP. Prediction accuracies of GEBV increased as the number of closely-related ancestral generations included in the training set increased, but reached an asymptote or slightly decreased when distant ancestral generations were used in the training set. The optimal number of training generations was 4 or more for high heritability traits but less than that for low heritability traits. For less heritable traits, limiting the training datasets to individuals closely related to the validation population resulted in the best predictions. CONCLUSIONS: The effect of adding distant ancestral generations in the training set on prediction accuracy differed between traits and the optimal number of necessary training generations is associated with the heritability of traits.


Asunto(s)
Pollos/genética , Genómica/métodos , Linaje , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Animales , Teorema de Bayes , Cruzamiento , Huevos/normas , Femenino , Genoma , Genotipo , Modelos Animales , Modelos Genéticos , Fenotipo , Selección Genética
16.
Genet Sel Evol ; 47: 99, 2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26698091

RESUMEN

BACKGROUND: More accurate genomic predictions are expected when the effects of QTL (quantitative trait loci) are predicted from markers in close physical proximity to the QTL. The objective of this study was to quantify to what extent whole-genome methods using 50 K or imputed 770 K SNPs (single nucleotide polymorphisms) could predict single or multiple QTL genotypes based on SNPs in close proximity to those QTL. METHODS: Phenotypes with a heritability of 1 were simulated for 2677 Hereford animals genotyped with the BovineSNP50 BeadChip. Genotypes for the high-density 770 K SNP panel were imputed using Beagle software. Various Bayesian regression methods were used to predict single QTL or a trait influenced by 42 such QTL. We quantified to what extent these predictions were based on SNPs in close proximity to the QTL by comparing whole-genome predictions to local predictions based on estimates of the effects of variable numbers of SNPs i.e. ±1, ±2, ±5, ±10, ±50 or ±100 that flanked the QTL. RESULTS: Prediction accuracies based on local SNPs using whole-genome training for single QTL with the 50 K SNP panel and BayesC0 ranged from 0.49 (±1 SNP) to 0.75 (±100 SNPs). The minimum number of local SNPs for an accurate prediction is ±10 SNPs. Prediction accuracies that were based on local SNPs only were higher than those based on whole-genome SNPs for both 50 K and 770 K SNP panels. For the 770 K SNP panel, prediction accuracies were higher than 0.70 and varied little i.e. between 0.73 (±1 SNP) and 0.77 (±5 SNPs). For the summed 42 QTL, prediction accuracies were generally higher than for single QTL regardless of the number of local SNPs. For QTL with low minor allele frequency (MAF) compared to QTL with high MAF, prediction accuracies increased as the number of SNPs around the QTL increased. CONCLUSIONS: These results suggest that with both 50 K and imputed 770 K SNP genotypes the level of linkage disequilibrium is sufficient to predict single and multiple QTL. However, prediction accuracies are eroded through spuriously estimated effects of SNPs that are distant from the QTL. Prediction accuracies were higher with the 770 K than with the 50 K SNP panel.


Asunto(s)
Genoma , Genómica/métodos , Genotipo , Modelos Genéticos , Herencia Multifactorial , Fenotipo , Sitios de Carácter Cuantitativo , Algoritmos , Animales , Teorema de Bayes , Cruzamiento , Bovinos , Frecuencia de los Genes , Marcadores Genéticos , Cadenas de Markov , Modelos Estadísticos , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Reproducibilidad de los Resultados , Selección Genética
17.
Genet Sel Evol ; 47: 80, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26467850

RESUMEN

BACKGROUND: In whole-genome analyses, the number p of marker covariates is often much larger than the number n of observations. Bayesian multiple regression models are widely used in genomic selection to address this problem of [Formula: see text] The primary difference between these models is the prior assumed for the effects of the covariates. Usually in the BayesB method, a Metropolis-Hastings (MH) algorithm is used to jointly sample the marker effect and the locus-specific variance, which may make BayesB computationally intensive. In this paper, we show how the Gibbs sampler without the MH algorithm can be used for the BayesB method. RESULTS: We consider three different versions of the Gibbs sampler to sample the marker effect and locus-specific variance for each locus. Among the Gibbs samplers that were considered, the most efficient sampler is about 2.1 times as efficient as the MH algorithm proposed by Meuwissen et al. and 1.7 times as efficient as that proposed by Habier et al. CONCLUSIONS: The three Gibbs samplers presented here were twice as efficient as Metropolis-Hastings samplers and gave virtually the same results.


Asunto(s)
Algoritmos , Genoma , Teorema de Bayes , Simulación por Computador , Variación Genética , Modelos Genéticos
18.
Genet Sel Evol ; 47: 23, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25884158

RESUMEN

BACKGROUND: While several studies have examined the accuracy of direct genomic breeding values (DGV) within and across purebred cattle populations, the accuracy of DGV in crossbred or multi-breed cattle populations has been less well examined. Interest in the use of genomic tools for both selection and management has increased within the hybrid seedstock and commercial cattle sectors and research is needed to determine their efficacy. We predicted DGV for six traits using training populations of various sizes and alternative Bayesian models for a population of 3240 crossbred animals. Our objective was to compare alternate models with different assumptions regarding the distributions of single nucleotide polymorphism (SNP) effects to determine the optimal model for enhancing feasibility of multi-breed DGV prediction for the commercial beef industry. RESULTS: Realized accuracies ranged from 0.40 to 0.78. Randomly assigning 60 to 70% of animals to training (n ≈ 2000 records) yielded DGV accuracies with the smallest coefficients of variation. Mixture models (BayesB95, BayesCπ) and models that allow SNP effects to be sampled from distributions with unequal variances (BayesA, BayesB95) were advantageous for traits that appear or are known to be influenced by large-effect genes. For other traits, models differed little in prediction accuracy (~0.3 to 0.6%), suggesting that they are mainly controlled by small-effect loci. CONCLUSIONS: The proportion (60 to 70%) of data allocated to training that optimized DGV accuracy and minimized the coefficient of variation of accuracy was similar to large dairy populations. Larger effects were estimated for some SNPs using BayesA and BayesB95 models because they allow unequal SNP variances. This substantially increased DGV accuracy for Warner-Bratzler Shear Force, for which large-effect quantitative trait loci (QTL) are known, while no loss in accuracy was observed for traits that appear to follow the infinitesimal model. Large decreases in accuracy (up to 0.07) occurred when SNPs that presumably tag large-effect QTL were over-regressed towards the mean in BayesC0 analyses. The DGV accuracies achieved here indicate that genomic selection has predictive utility in the commercial beef industry and that using models that reflect the genomic architecture of the trait can have predictive advantages in multi-breed populations.


Asunto(s)
Teorema de Bayes , Bovinos/genética , Genómica , Hibridación Genética/genética , Animales , Genoma , Genotipo , Carne , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
19.
Genet Sel Evol ; 47: 59, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26149977

RESUMEN

BACKGROUND: Genomic selection (GS) using estimated breeding values (GS-EBV) based on dense marker data is a promising approach for genetic improvement. A simulation study was undertaken to illustrate the opportunities offered by GS for designing breeding programs. It consisted of a selection program for a sex-limited trait in layer chickens, which was developed by deterministic predictions under different scenarios. Later, one of the possible schemes was implemented in a real population of layer chicken. METHODS: In the simulation, the aim was to double the response to selection per year by reducing the generation interval by 50 %, while maintaining the same rate of inbreeding per year. We found that GS with retraining could achieve the set objectives while requiring 75 % fewer reared birds and 82 % fewer phenotyped birds per year. A multi-trait GS scenario was subsequently implemented in a real population of brown egg laying hens. The population was split into two sub-lines, one was submitted to conventional phenotypic selection, and one was selected based on genomic prediction. At the end of the 3-year experiment, the two sub-lines were compared for multiple performance traits that are relevant for commercial egg production. RESULTS: Birds that were selected based on genomic prediction outperformed those that were submitted to conventional selection for most of the 16 traits that were included in the index used for selection. However, although the two programs were designed to achieve the same rate of inbreeding per year, the realized inbreeding per year assessed from pedigree was higher in the genomic selected line than in the conventionally selected line. CONCLUSIONS: The results demonstrate that GS is a promising alternative to conventional breeding for genetic improvement of layer chickens.


Asunto(s)
Pollos/genética , Selección Genética , Selección Artificial/genética , Animales , Pollos/fisiología , Modelos Genéticos , Linaje , Fenotipo , Sitios de Carácter Cuantitativo
20.
Genomics ; 104(6 Pt B): 572-81, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25304740

RESUMEN

Changing bovine milk fatty acid (FA) composition through selection can decrease saturated FA (SFA) consumption, improve human health and provide a means for manipulating processing properties of milk. Our study determined associations between milk FA composition and genes from triacylglycerol (TAG) biosynthesis pathway. The GC dinucleotide allele of diacylglycerol O-acyltransferase 1:g.10433-10434AA >GC was associated with lower palmitic acid (16:0) concentration but higher oleic (18:1 cis-9), linoleic (18:2 cis-9, cis-12) acid concentrations, and elongation index. Accordingly, the GC dinucleotide allele was associated with lower milk fat percentage and SFA concentrations but higher monounsaturated FA and polyunsaturated FA (PUFA) concentrations. The glycerol-3-phosphate acyltransferase, mitochondrial haplotypes were associated with higher myristoleic acid (14:1 cis-9) concentration and C14 desaturation index. The 1-acylglycerol-3-phosphate acyltransferase 1 haplotypes were associated with higher PUFA and linoleic acid concentrations. The results of this study provide information for developing genetic tools to modify milk FA composition in dairy cattle.


Asunto(s)
Bovinos/genética , Diacilglicerol O-Acetiltransferasa/genética , Ácidos Grasos/análisis , Glicerol-3-Fosfato O-Aciltransferasa/genética , Leche/química , Polimorfismo de Nucleótido Simple , Animales , Lipogénesis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA