Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Cell Fact ; 20(1): 90, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33902608

RESUMEN

BACKGROUND: Currently, the numerous and versatile applications in pharmaceutical and chemical industry make the recombinant production of cytochrome P450 enzymes (CYPs) of great biotechnological interest. Accelerating the drug development process by simple, quick and scalable access of human drug metabolites is key for efficient and targeted drug development in response to new and sometimes unexpected medical challenges and needs. However, due its biochemical complexity, scalable human CYP (hCYP) production and their application in preparative biotransformations was still in its infancy. RESULTS: A scalable bioprocess for fine-tuned co-expression of hCYP2C9 and its essential complementary human cytochrome P450 reductase (hCPR) in the yeast Pichia pastoris (Komagataella phaffii) is presented. High-throughput screening (HTS) of a transformant library employing a set of diverse bidirectional expression systems with different regulation patterns and a fluorimetric assay was used in order to fine-tune hCYP2C9 and hCPR co-expression, and to identify best expressing clonal variants. The bioprocess development for scalable and reliable whole cell biocatalyst production in bioreactors was carried out based on rational optimization criteria. Among the different alternatives studied, a glycerol carbon-limiting strategy at high µ showed highest production rates, while methanol co-addition together with a decrease of µ provided the best results in terms of product to biomass yield and whole cell activity. By implementing the mentioned strategies, up to threefold increases in terms of production rates and/or yield could be achieved in comparison with initial tests. Finally, the performance of the whole cell catalysts was demonstrated successfully in biotransformation using ibuprofen as substrate, demonstrating the expected high selectivity of the human enzyme catalyst for 3'hydroxyibuprofen. CONCLUSIONS: For the first time a scalable bioprocess for the production of hCYP2C9 whole cell catalysts was successfully designed and implemented in bioreactor cultures, and as well, further tested in a preparative-scale biotransformation of interest. The catalyst engineering procedure demonstrated the efficiency of the employment of a set of differently regulated bidirectional promoters to identify transformants with most effective membrane-bound hCYP/hCPR co-expression ratios and implies to become a model case for the generation of other P. pastoris based catalysts relying on co-expressed enzymes such as other P450 catalysts or enzymes relying on co-expressed enzymes for co-factor regeneration.


Asunto(s)
Sistema Enzimático del Citocromo P-450/biosíntesis , Ingeniería Metabólica/métodos , Proteínas Recombinantes/biosíntesis , Saccharomycetales/metabolismo , Reactores Biológicos , Catálisis , Humanos
2.
Microb Cell Fact ; 20(1): 74, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33757505

RESUMEN

BACKGROUND: Pichia pastoris is a powerful and broadly used host for recombinant protein production (RPP), where past bioprocess performance has often been directed with the methanol regulated AOX1 promoter (PAOX1), and the constitutive GAP promoter (PGAP). Since promoters play a crucial role in an expression system and the bioprocess efficiency, innovative alternatives are constantly developed and implemented. Here, a thorough comparative kinetic characterization of two expression systems based on the commercial PDF and UPP promoters (PPDF, PUPP) was first conducted in chemostat cultures. Most promising conditions were subsequently tested in fed-batch cultivations. These new alternatives were compared with the classical strong promoter PGAP, using the Candida antarctica lipase B (CalB) as model protein for expression system performance. RESULTS: Both the PPDF and PUPP-based expression systems outperformed similar PGAP-based expression in chemostat cultivations, reaching ninefold higher specific production rates (qp). CALB transcription levels were drastically higher when employing the novel expression systems. This higher expression was also correlated with a marked upregulation of unfolded protein response (UPR) related genes, likely from an increased protein burden in the endoplasmic reticulum (ER). Based on the chemostat results obtained, best culture strategies for both PPDF and PUPP expression systems were also successfully implemented in 15 L fed-batch cultivations where qp and product to biomass yield (YP/X*) values were similar than those obtained in chemostat cultivations. CONCLUSIONS: As an outcome of the macrokinetic characterization presented, the novel PPDF and PUPP were observed to offer much higher efficiency for CalB production than the widely used PGAP-based methanol-free alternative. Thus, both systems arise as highly productive alternatives for P. pastoris-based RPP bioprocesses. Furthermore, the different expression regulation patterns observed indicate the level of gene expression can be adjusted, or tuned, which is interesting when using Pichia pastoris as a cell factory for different products of interest.


Asunto(s)
Expresión Génica , Regiones Promotoras Genéticas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo , Técnicas de Cultivo Celular por Lotes , Cinética , Metanol/metabolismo
3.
Microb Cell Fact ; 18(1): 187, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31675969

RESUMEN

BACKGROUND: The PAOX1-based expression system is the most widely used for producing recombinant proteins in the methylotrophic yeast Pichia pastoris (Komagataella phaffii). Despite relevant recent advances in regulation of the methanol utilization (MUT) pathway have been made, the role of specific growth rate (µ) in AOX1 regulation remains unknown, and therefore, its impact on protein production kinetics is still unclear. RESULTS: The influence of heterologous gene dosage, and both, operational mode and strategy, on culture physiological state was studied by cultivating the two PAOX1-driven Candida rugosa lipase 1 (Crl1) producer clones. Specifically, a clone integrating a single expression cassette of CRL1 was compared with one containing three cassettes over broad dilution rate and µ ranges in both chemostat and fed-batch cultivations. Chemostat cultivations allowed to establish the impact of µ on the MUT-related MIT1 pool which leads to a bell-shaped relationship between µ and PAOX1-driven gene expression, influencing directly Crl1 production kinetics. Also, chemostat and fed-batch cultivations exposed the favorable effects of increasing the CRL1 gene dosage (up to 2.4 fold in qp) on Crl1 production with no significant detrimental effects on physiological capabilities. CONCLUSIONS: PAOX1-driven gene expression and Crl1 production kinetics in P. pastoris were successfully correlated with µ. In fact, µ governs MUT-related MIT1 amount that triggers PAOX1-driven gene expression-heterologous genes included-, thus directly influencing the production kinetics of recombinant protein.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Proteínas Fúngicas/metabolismo , Metanol/metabolismo , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Dosificación de Gen , Expresión Génica , Regulación Fúngica de la Expresión Génica , Pichia/genética , Regiones Promotoras Genéticas
4.
Front Bioeng Biotechnol ; 10: 818434, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35155391

RESUMEN

The combination of strain and bioprocess engineering strategies should be considered to obtain the highest levels of recombinant protein production (RPP) while assuring product quality and process reproducibility of heterologous products. In this work, two complementary approaches were investigated to improve bioprocess efficiency based on the yeast P. pastoris. Firstly, the performance of two Candida rugosa lipase 1 producer clones with different gene dosage under the regulation of the constitutive P GAP were compared in chemostat cultures with different oxygen-limiting conditions. Secondly, hypoxic conditions in carbon-limited fed-batch cultures were applied by means of a physiological control based on the respiratory quotient (RQ). Stirring rate was selected to maintain RQ between 1.4 and 1.6, since it was found to be the most favorable in chemostat. As the major outcome, between 2-fold and 4-fold higher specific production rate (q P ) values were observed when comparing multicopy clone (MCC) and single-copy clone (SCC), both in chemostat and fed-batch. Additionally, when applying oxygen limitation, between 1.5-fold and 3-fold higher q P values were obtained compared with normoxic conditions. Thus, notable increases of up to 9-fold in the production rates were reached. Furthermore, transcriptional analysis of certain key genes related to RPP and central carbon metabolism were performed. Results seem to indicate the presence of a limitation in post-transcriptional protein processing steps and a possible transcription attenuation of the target gene in the strains with high gene dosage. The entire approach, including both strain and bioprocess engineering, represents a relevant novelty involving physiological control in Pichia cell factory and is of crucial interest in bioprocess optimization, boosting RPP, allowing bioproducts to be economically competitive in the market, and helping develop the bioeconomy.

5.
Microb Biotechnol ; 13(2): 315-327, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31657146

RESUMEN

Its features as a microbial and eukaryotic organism have turned Komagataella phaffii (Pichia pastoris) into an emerging cell factory for recombinant protein production (RPP). As a key step of the bioprocess development, this work aimed to demonstrate the importance of tailor designing the cultivation strategy according to the production kinetics of the cell factory. For this purpose, K. phaffii clones constitutively expressing (PGAP ) Candida rugosa lipase 1 (Crl1) with different gene dosage were used as models in continuous and fed-batch cultures. Production parameters were much greater with a multicopy clone (MCC) than with the single-copy clone (SCC). Regarding production kinetics, the specific product generation rate (qP ) increased linearly with increasing specific growth rate (µ) in SCC; by contrast, qP exhibited saturation in MCC. A transcriptional analysis in chemostat cultures suggested the presence of eventual post-transcriptional bottlenecks in MCC. After the strain characterization, in order to fulfil overall development of the bioprocess, the performance of both clones was also evaluated in fed-batch mode. Strikingly, different optimal strategies were determined for both models due to the different production kinetic patterns observed as a trade-off for product titre, yields and productivity. The combined effect of gene dosage and adequate µ enables rational process development with a view to optimize K. phaffii RPP bioprocesses.


Asunto(s)
Pichia , Dosificación de Gen , Pichia/genética , Proteínas Recombinantes/genética , Saccharomycetales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA