Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS Biol ; 16(7): e2005263, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30036371

RESUMEN

Bones at different anatomical locations vary dramatically in size. For example, human femurs are 20-fold longer than the phalanges in the fingers and toes. The mechanisms responsible for these size differences are poorly understood. Bone elongation occurs at the growth plates and advances rapidly in early life but then progressively slows due to a developmental program termed "growth plate senescence." This developmental program includes declines in cell proliferation and hypertrophy, depletion of cells in all growth plate zones, and extensive underlying changes in the expression of growth-regulating genes. Here, we show evidence that these functional, structural, and molecular senescent changes occur earlier in the growth plates of smaller bones (metacarpals, phalanges) than in the growth plates of larger bones (femurs, tibias) and that this differential aging contributes to the disparities in bone length. We also show evidence that the molecular mechanisms that underlie the differential aging between different bones involve modulation of critical paracrine regulatory pathways, including insulin-like growth factor (Igf), bone morphogenetic protein (Bmp), and Wingless and Int-1 (Wnt) signaling. Taken together, the findings reveal that the striking disparities in the lengths of different bones, which characterize normal mammalian skeletal proportions, is achieved in part by modulating the progression of growth plate senescence.


Asunto(s)
Envejecimiento/fisiología , Huesos/anatomía & histología , Cartílago/crecimiento & desarrollo , Placa de Crecimiento/crecimiento & desarrollo , Animales , Desarrollo Óseo , Proliferación Celular , Condrocitos/patología , Extremidades/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Hipertrofia , Ratones Endogámicos C57BL , Comunicación Paracrina , Ratas Sprague-Dawley , Tibia/crecimiento & desarrollo
2.
Curr Opin Pediatr ; 27(4): 502-10, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26087427

RESUMEN

PURPOSE OF REVIEW: Recent basic studies have yielded important new insights into the molecular mechanisms that regulate growth locally. Simultaneously, clinical studies have identified new molecular defects that cause growth failure and overgrowth, and genome-wide association studies have elucidated the genetic basis for normal human height variation. RECENT FINDINGS: The Hippo pathway has emerged as one of the major mechanisms controlling organ size. In addition, an extensive genetic program has been described that allows rapid body growth in the fetus and infant but then causes growth to slow with age in multiple tissues. In human genome-wide association studies, hundreds of loci associated with adult stature have been identified; many appear to involve genes that function locally in the growth plate. Clinical genetic studies have identified a new genetic abnormality, microduplication of Xq26.3, that is responsible for growth hormone excess, and a gene, DNMT3A, in which mutations cause an overgrowth syndrome through epigenetic mechanisms. SUMMARY: These recent advances in our understanding of somatic growth not only provide insight into childhood growth disorders but also have broader medical applications because disruption of these regulatory systems contributes to oncogenesis.


Asunto(s)
Estatura/genética , Estudio de Asociación del Genoma Completo , Trastornos del Crecimiento/genética , Placa de Crecimiento/metabolismo , Hipocampo/fisiología , Estatura/fisiología , Niño , Fenómenos Fisiológicos Nutricionales Infantiles , Preescolar , Perfilación de la Expresión Génica , Trastornos del Crecimiento/fisiopatología , Placa de Crecimiento/fisiología , Humanos , Lactante , Recién Nacido , Mutación , Fenotipo , Sitios de Carácter Cuantitativo/genética , Transducción de Señal
3.
PLoS One ; 12(5): e0176752, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28467498

RESUMEN

Articular and growth plate cartilage both arise from condensations of mesenchymal cells, but ultimately develop important histological and functional differences. Each is composed of three layers-the superficial, mid and deep zones of articular cartilage and the resting, proliferative and hypertrophic zones of growth plate cartilage. The bone morphogenetic protein (BMP) system plays an important role in cartilage development. A gradient in expression of BMP-related genes has been observed across growth plate cartilage, likely playing a role in zonal differentiation. To investigate the presence of a similar expression gradient in articular cartilage, we used laser capture microdissection (LCM) to separate murine growth plate and articular cartilage from the proximal tibia into their six constituent zones, and used a solution hybridization assay with color-coded probes (nCounter) to quantify mRNAs for 30 different BMP-related genes in each zone. In situ hybridization and immunohistochemistry were then used to confirm spatial expression patterns. Expression gradients for Bmp2 and 6 were observed across growth plate cartilage with highest expression in hypertrophic zone. However, intracellular BMP signaling, assessed by phospho-Smad1/5/8 immunohistochemical staining, appeared to be higher in the proliferative zone and prehypertrophic area than in hypertrophic zone, possibly due to high expression of Smad7, an inhibitory Smad, in the hypertrophic zone. We also found BMP expression gradients across the articular cartilage with BMP agonists primarily expressed in the superficial zone and BMP functional antagonists primarily expressed in the deep zone. Phospho-Smad1/5/8 immunohistochemical staining showed a similar gradient. In combination with previous evidence that BMPs regulate chondrocyte proliferation and differentiation, the current findings suggest that BMP signaling gradients exist across both growth plate and articular cartilage and that these gradients may contribute to the spatial differentiation of chondrocytes in the postnatal endochondral skeleton.


Asunto(s)
Animales Recién Nacidos/crecimiento & desarrollo , Proteínas Morfogenéticas Óseas/fisiología , Cartílago Articular/crecimiento & desarrollo , Placa de Crecimiento/crecimiento & desarrollo , Animales , Animales Recién Nacidos/fisiología , Proteína Morfogenética Ósea 2/fisiología , Proteína Morfogenética Ósea 6/fisiología , Cartílago Articular/fisiología , Colorantes , Regulación del Desarrollo de la Expresión Génica/fisiología , Placa de Crecimiento/fisiología , Hibridación in Situ , Captura por Microdisección con Láser/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/fisiología
4.
Nat Commun ; 7: 13685, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27897169

RESUMEN

Histone methyltransferases EZH1 and EZH2 catalyse the trimethylation of histone H3 at lysine 27 (H3K27), which serves as an epigenetic signal for chromatin condensation and transcriptional repression. Genome-wide associated studies have implicated EZH2 in the control of height and mutations in EZH2 cause Weaver syndrome, which includes skeletal overgrowth. Here we show that the combined loss of Ezh1 and Ezh2 in chondrocytes severely impairs skeletal growth in mice. Both of the principal processes underlying growth plate chondrogenesis, chondrocyte proliferation and hypertrophy, are compromised. The decrease in chondrocyte proliferation is due in part to derepression of cyclin-dependent kinase inhibitors Ink4a/b, while ineffective chondrocyte hypertrophy is due to the suppression of IGF signalling by the increased expression of IGF-binding proteins. Collectively, our findings reveal a critical role for H3K27 methylation in the regulation of chondrocyte proliferation and hypertrophy in the growth plate, which are the central determinants of skeletal growth.


Asunto(s)
Desarrollo Óseo , Condrocitos/metabolismo , Condrocitos/patología , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Animales , Animales Recién Nacidos , Desarrollo Óseo/genética , Proliferación Celular , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Placa de Crecimiento/metabolismo , Hipertrofia , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Ratones Endogámicos C57BL , Modelos Biológicos , Tibia/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA