Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(8)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33608462

RESUMEN

Nonreciprocity emerges in nature and in artificial objects from various physical origins, being widely utilized in contemporary technologies as exemplified by diode elements in electronics. While most of the nonreciprocal phenomena are realized by employing interfaces where the inversion symmetry is trivially lifted, nonreciprocal transport of photons, electrons, magnons, and possibly phonons also emerge in bulk crystals with broken space inversion and time reversal symmetries. Among them, directional propagation of bulk magnons (i.e., quanta of spin wave excitation) is attracting much attention nowadays for its potentially large nonreciprocity suitable for spintronic and spin-caloritronic applications. Here, we demonstrate nonreciprocal propagation of spin waves for the conical spin helix state in Cu2OSeO3 due to a combination of dipole and Dzyaloshinskii-Moriya interactions. The observed nonreciprocal spin dispersion smoothly connects to the hitherto known magnetochiral nonreciprocity in the field-induced collinear spin state; thus, all the spin phases show diode characteristics in this chiral insulator.

2.
Phys Rev Lett ; 121(18): 187205, 2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30444411

RESUMEN

We report high-precision small-angle neutron scattering of the orientation of the Skyrmion lattice in a spherical sample of MnSi under systematic changes of the magnetic field direction. For all field directions the Skyrmion lattice may be accurately described as a triple-Q[over →] state, where the modulus |Q[over →]| is constant and the wave vectors enclose rigid angles of 120°. Along a great circle across ⟨100⟩, ⟨110⟩, and ⟨111⟩ the normal to the Skyrmion-lattice plane varies systematically by ±3° with respect to the field direction, while the in-plane alignment displays a reorientation by 15° for magnetic field along ⟨100⟩. Our observations are qualitatively and quantitatively in excellent agreement with an effective potential, which is determined by the symmetries of the tetrahedral point group T and includes contributions up to sixth order in spin-orbit coupling, providing a full account of the effect of cubic magnetocrystalline anisotropies on the Skyrmion lattice in MnSi.

3.
Phys Rev Lett ; 118(22): 227601, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28621984

RESUMEN

Theoretically, it is commonly held that in metals near a nematic quantum critical point the electronic excitations become incoherent on the entire "hot" Fermi surface, triggering non-Fermi-liquid behavior. However, such conclusions are based on electron-only theories, ignoring a symmetry-allowed coupling between the electronic nematic variable and a suitable crystalline lattice strain. Here, we show that including this coupling leads to entirely different conclusions because the critical fluctuations are mostly cut off by the noncritical lattice shear modes. At sufficiently low temperatures the thermodynamics remain Fermi-liquid type, while, depending on the Fermi surface geometry, either the entire Fermi surface stays cold, or at most there are hot spots. In particular, our predictions are relevant for the iron-based superconductors.

4.
Nat Mater ; 14(5): 478-83, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25730395

RESUMEN

Nearly seven decades of research on microwave excitations of magnetic materials have led to a wide range of applications in electronics. The recent discovery of topological spin solitons in chiral magnets, so-called skyrmions, promises high-frequency devices that exploit the exceptional emergent electrodynamics of these compounds. Therefore, an accurate and unified quantitative account of their resonant response is key. Here, we report all-electrical spectroscopy of the collective spin excitations in the metallic, semiconducting and insulating chiral magnets MnSi, Fe1-xCoxSi and Cu2OSeO3, respectively, using broadband coplanar waveguides. By taking into account dipolar interactions, we achieve a precise quantitative modelling across the entire magnetic phase diagrams using two material-specific parameters that quantify the chiral and the critical field energy. The universal behaviour sets the stage for purpose-designed applications based on the resonant response of chiral magnets with tailored electric conductivity and an unprecedented freedom for an integration with electronics.

5.
Phys Rev Lett ; 115(26): 267202, 2015 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-26765018

RESUMEN

We report comprehensive small angle neutron scattering measurements complemented by ac susceptibility data of the helical order, conical phase, and Skyrmion lattice phase (SLP) in MnSi under uniaxial pressures. For all crystallographic orientations uniaxial pressure favors the phase for which a spatial modulation of the magnetization is closest to the pressure axis. Uniaxial pressures as low as 1 kbar applied perpendicular to the magnetic field axis enhance the Skyrmion lattice phase substantially, whereas the Skyrmion lattice phase is suppressed for pressure parallel to the field. Taken together we present quantitative microscopic information on how strain couples to magnetic order in the chiral magnet MnSi.

6.
Phys Rev Lett ; 115(9): 097203, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26371678

RESUMEN

A magnetic helix realizes a one-dimensional magnetic crystal with a period given by the pitch length λh. Its spin-wave excitations-the helimagnons-experience Bragg scattering off this periodicity, leading to gaps in the spectrum that inhibit their propagation along the pitch direction. Using high-resolution inelastic neutron scattering, the resulting band structure of helimagnons was resolved by preparing a single crystal of MnSi in a single magnetic-helix domain. At least five helimagnon bands could be identified that cover the crossover from flat bands at low energies with helimagnons basically localized along the pitch direction to dispersing bands at higher energies. In the low-energy limit, we find the helimagnon spectrum to be determined by a universal, parameter-free theory. Taking into account corrections to this low-energy theory, quantitative agreement is obtained in the entire energy range studied with the help of a single fitting parameter.

7.
Phys Rev Lett ; 110(17): 177207, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23679769

RESUMEN

We report high-precision measurements of the temperature and magnetic field dependence of the specific heat, C(T,H), across the magnetic phase diagram of MnSi. Clear anomalies establish the Skyrmion lattice unambiguously as a thermodynamic phase. The evolution of the specific heat anomalies, the field dependence of the entropy released at the phase transitions, and the temperature versus field dependence of crossover lines provide striking evidence of a tricritical point at µ0H(TCP)(int) = 340 mT and T(TCP) = 28.5 K. The existence of this tricritical point represents strong support of a helimagnetic Brazovskii transition, i.e., a fluctuation-induced first-order transition at H = 0.

8.
Phys Rev Lett ; 111(11): 116401, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-24074108

RESUMEN

Bicritical points, at which two distinct symmetry-broken phases become simultaneously unstable, are typical for spin-flop metamagnetism. Interestingly, the heavy-fermion compound YbAgGe also possesses such a bicritical point (BCP) with a low temperature T(BCP)≈0.3 K at a magnetic field of µH(BCP)≈4.5 T. In its vicinity, YbAgGe exhibits anomalous behavior that we attribute to the influence of a quantum bicritical point that is close in parameter space yet can be reached by tuning T(BCP) further to zero. Using high-resolution measurements of the magnetocaloric effect, we demonstrate that the magnetic Grüneisen parameter ΓH indeed both changes sign and diverges as required for quantum criticality. Moreover, ΓH displays a characteristic scaling behavior but only on the low-field side H≲H(BCP), indicating a pronounced asymmetry with respect to the critical field. We speculate that the small value of T(BCP) is related to the geometric frustration of the Kondo lattice of YbAgGe.

9.
Phys Rev Lett ; 111(18): 187202, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24237555

RESUMEN

Comparing high-resolution specific heat and thermal expansion measurements to exact finite-size diagonalization, we demonstrate that Cs(2)CoCl(4) for a magnetic field along the crystallographic b axis realizes the spin-1/2 XXZ chain in a transverse field. Exploiting both thermal as well as virtual excitations of higher crystal-field states, we find that the spin chain is in the XY limit with an anisotropy J(z)/J[perpindicular] ≈ 0.12, substantially smaller than previously believed. A spin-flop Ising quantum phase transition occurs at a critical field of µ(0)H(b)(cr) ≈ 2 T before around 3.5 T the description in terms of an effective spin-1/2 chain becomes inapplicable.

10.
Science ; 382(6669): 447-450, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37883549

RESUMEN

The interplay of electronic and structural degrees of freedom in solids is a topic of intense research. More than 60 years ago, Lifshitz discussed a counterintuitive possibility: lattice softening driven by conduction electrons at topological Fermi surface transitions. The effect that he predicted, however, was small and has not been convincingly observed. Using a piezo-based uniaxial pressure cell to tune the ultraclean metal strontium ruthenate while measuring the stress-strain relationship, we reveal a huge softening of the Young's modulus at a Lifshitz transition of a two-dimensional Fermi surface and show that it is indeed driven entirely by the conduction electrons of the relevant energy band.

11.
Science ; 375(6584): 1025-1030, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35239388

RESUMEN

The motion of a spin excitation across topologically nontrivial magnetic order exhibits a deflection that is analogous to the effect of the Lorentz force on an electrically charged particle in an orbital magnetic field. We used polarized inelastic neutron scattering to investigate the propagation of magnons (i.e., bosonic collective spin excitations) in a lattice of skyrmion tubes in manganese silicide. For wave vectors perpendicular to the skyrmion tubes, the magnon spectra are consistent with the formation of finely spaced emergent Landau levels that are characteristic of the fictitious magnetic field used to account for the nontrivial topological winding of the skyrmion lattice. This provides evidence of a topological magnon band structure in reciprocal space, which is borne out of the nontrivial real-space topology of a magnetic order.

12.
Phys Rev Lett ; 107(21): 217206, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-22181921

RESUMEN

We report small angle neutron scattering of the Skyrmion lattice in MnSi using an experimental setup that minimizes the effects of demagnetizing fields and double scattering. Under these conditions, the Skyrmion lattice displays resolution-limited Gaussian rocking peaks that correspond to a magnetic correlation length in excess of several hundred micrometers. This is consistent with exceptionally well-defined long-range order. We further establish the existence of higher-order scattering, discriminating parasitic double scattering with Renninger scans. The field and temperature dependence of the higher-order scattering arises from an interference effect. It is characteristic for the long-range crystalline nature of the Skyrmion lattice as shown by simple mean-field calculations.

13.
Nature ; 427(6971): 227-31, 2004 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-14724633

RESUMEN

Only a few metallic phases have been identified in pure crystalline materials. These include normal, ferromagnetic and antiferromagnetic metals, systems with spin and charge density wave order, and superconductors. Fermi-liquid theory provides a basis for the description of all of these phases. It has been suggested that non-Fermi-liquid phases of metals may exist in some heavy-fermion compounds and oxide materials, but the discovery of a characteristic microscopic signature of such phases presents a major challenge. The transition-metal compound MnSi above a certain pressure (p(c) = 14.6 kbar) provides what may be the cleanest example of an extended non-Fermi-liquid phase in a three-dimensional metal. The bulk properties of MnSi suggest that long-range magnetic order is suppressed at p(c) (refs 7-12). Here we report neutron diffraction measurements of MnSi, revealing that sizeable quasi-static magnetic moments survive far into the non-Fermi-liquid phase. These moments are organized in an unusual pattern with partial long-range order. Our observation supports the existence of novel metallic phases with partial ordering of the conduction electrons (reminiscent of liquid crystals), as proposed for the high-temperature superconductors and heavy-fermion compounds.

14.
Nat Commun ; 11(1): 256, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31937762

RESUMEN

Magnetic skyrmions, topological solitons characterized by a two-dimensional swirling spin texture, have recently attracted attention as stable particle-like objects. In a three-dimensional system, a skyrmion can extend in the third dimension forming a robust and flexible string structure, whose unique topology and symmetry are anticipated to host nontrivial functional responses. Here we experimentally demonstrate the coherent propagation of spin excitations along skyrmion strings for the chiral-lattice magnet Cu2OSeO3. We find that this propagation is directionally non-reciprocal and the degree of non-reciprocity, as well as group velocity and decay length, are strongly dependent on the character of the excitation modes. These spin excitations can propagate over a distance exceeding 50 µm, demonstrating the excellent long-range ordered nature of the skyrmion-string structure. Our combined experimental and theoretical analyses offer a comprehensive account of the propagation dynamics of skyrmion-string excitations and suggest the possibility of unidirectional information transfer along such topologically protected strings.

15.
Br J Pharmacol ; 154(5): 1079-93, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18587449

RESUMEN

BACKGROUND AND PURPOSE: A prostamide analogue, bimatoprost, has been shown to be effective in reducing intraocular pressure, but its precise mechanism of action remains unclear. Hence, to elucidate the molecular mechanisms of this effect of bimatoprost, we focused on pharmacologically characterizing prostaglandin FP receptor (FP) and FP receptor variant (altFP) complexes. EXPERIMENTAL APPROACH: FP receptor mRNA variants were identified by reverse transcription-polymerase chain reaction. The FP-altFP4 heterodimers were established in HEK293/EBNA cells co-expressing FP and altFP4 receptor variants. A fluorometric imaging plate reader was used to study Ca2+ mobilization. Upregulation of cysteine-rich angiogenic protein 61 (Cyr61) mRNA was measured by Northern blot analysis, and phosphorylation of myosin light chain (MLC) by western analysis. KEY RESULTS: Six splicing variants of FP receptor mRNA were identified in human ocular tissues. Immunoprecipitation confirmed that the FP receptor is dimerized with altFP4 receptors in HEK293/EBNA cells co-expressing FP and altFP4 receptors. In the studies of the kinetic profile for Ca2+ mobilization, prostaglandin F2alpha (PGF2alpha) elicited a rapid increase in intracellular Ca2+ followed by a steady state phase. In contrast, bimatoprost elicited an immediate increase in intracellular Ca2+ followed by a second phase. The prostamide antagonist, AGN211335, selectively and dose-dependently inhibited the bimatoprost-initiated second phase of Ca2+ mobilization, Cyr61 mRNA upregulation and MLC phosphorylation, but did not block the action of PGF2alpha. CONCLUSION AND IMPLICATIONS: Bimatoprost lacks effects on the FP receptor but may interact with the FP-altFP receptor heterodimer to induce alterations in second messenger signalling. Hence, FP-altFP complexes may represent the underlying basis of bimatoprost pharmacology.


Asunto(s)
Empalme Alternativo , Amidas/farmacología , Cloprostenol/análogos & derivados , Dinoprost/metabolismo , Variación Genética , Receptores de Prostaglandina/efectos de los fármacos , Receptores de Prostaglandina/metabolismo , Transducción de Señal/efectos de los fármacos , Secuencia de Aminoácidos , Bimatoprost , Northern Blotting , Western Blotting , Calcio/metabolismo , Línea Celular , Cloprostenol/farmacología , Proteína 61 Rica en Cisteína , Dimerización , Relación Dosis-Respuesta a Droga , Ojo/efectos de los fármacos , Ojo/metabolismo , Humanos , Proteínas Inmediatas-Precoces/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Cinética , Datos de Secuencia Molecular , Cadenas Ligeras de Miosina/metabolismo , Fosforilación , ARN Mensajero/metabolismo , Receptores de Prostaglandina/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
16.
Sci Rep ; 7(1): 7037, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28765550

RESUMEN

Linear dichroism - the polarization dependent absorption of electromagnetic waves- is routinely exploited in applications as diverse as structure determination of DNA or polarization filters in optical technologies. Here filamentary absorbers with a large length-to-width ratio are a prerequisite. For magnetization dynamics in the few GHz frequency regime strictly linear dichroism was not observed for more than eight decades. Here, we show that the bulk chiral magnet Cu2OSeO3 exhibits linearly polarized magnetization dynamics at an unexpectedly small frequency of about 2 GHz at zero magnetic field. Unlike optical filters that are assembled from filamentary absorbers, the magnet is shown to provide linear polarization as a bulk material for an extremely wide range of length-to-width ratios. In addition, the polarization plane of a given mode can be switched by 90° via a small variation in width. Our findings shed a new light on magnetization dynamics in that ferrimagnetic ordering combined with antisymmetric exchange interaction offers strictly linear polarization and cross-polarized modes for a broad spectrum of sample shapes at zero field. The discovery allows for novel design rules and optimization of microwave-to-magnon transduction in emerging microwave technologies.

17.
Sci Rep ; 7(1): 123, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28273923

RESUMEN

Chiral magnets are promising materials for the realisation of high-density and low-power spintronic memory devices. For these future applications, a key requirement is the synthesis of appropriate materials in the form of thin films ordering well above room temperature. Driven by the Dzyaloshinskii-Moriya interaction, the cubic compound FeGe exhibits helimagnetism with a relatively high transition temperature of 278 K in bulk crystals. We demonstrate that this temperature can be enhanced significantly in thin films. Using x-ray scattering and ferromagnetic resonance techniques, we provide unambiguous experimental evidence for long-wavelength helimagnetic order at room temperature and magnetic properties similar to the bulk material. We obtain α intr = 0.0036 ± 0.0003 at 310 K for the intrinsic damping parameter. We probe the dynamics of the system by means of muon-spin rotation, indicating that the ground state is reached via a freezing out of slow dynamics. Our work paves the way towards the fabrication of thin films of chiral magnets that host certain spin whirls, so-called skyrmions, at room temperature and potentially offer integrability into modern electronics.

18.
Aerosp Med Hum Perform ; 92(7): 603-605, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34503636
19.
Nat Commun ; 7: 12430, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27535899

RESUMEN

Chiral magnetic interactions induce complex spin textures including helical and conical spin spirals, as well as particle-like objects such as magnetic skyrmions and merons. These spin textures are the basis for innovative device paradigms and give rise to exotic topological phenomena, thus being of interest for both applied and fundamental sciences. Present key questions address the dynamics of the spin system and emergent topological defects. Here we analyse the micromagnetic dynamics in the helimagnetic phase of FeGe. By combining magnetic force microscopy, single-spin magnetometry and Landau-Lifschitz-Gilbert simulations we show that the nanoscale dynamics are governed by the depinning and subsequent motion of magnetic edge dislocations. The motion of these topologically stable objects triggers perturbations that can propagate over mesoscopic length scales. The observation of stochastic instabilities in the micromagnetic structure provides insight to the spatio-temporal dynamics of itinerant helimagnets and topological defects, and discloses open challenges regarding their technological usage.

20.
J Med Chem ; 37(11): 1646-51, 1994 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-8201598

RESUMEN

A series of 4-substituted 2-thiophenesulfonamides was prepared from 3-thiophenecarboxaldehyde using metalation chemistry developed for 3-furaldehyde. Several of these compounds inhibit carbonic anhydrase II in vitro at concentrations of less than 10 nM. In addition, none of these compounds exhibit sensitization potential as determined from in vitro measurement of cysteine reactivity.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/síntesis química , Sulfonamidas/síntesis química , Tiofenos/síntesis química , Animales , Inhibidores de Anhidrasa Carbónica/farmacología , Cuerpo Ciliar/enzimología , Humanos , Estructura Molecular , Conejos , Relación Estructura-Actividad , Sulfonamidas/farmacología , Tiofenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA