Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Crit Care ; 26(1): 242, 2022 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-35934707

RESUMEN

A hallmark of ARDS is progressive shrinking of the 'baby lung,' now referred to as the ventilator-induced lung injury (VILI) 'vortex.' Reducing the risk of the VILI vortex is the goal of current ventilation strategies; unfortunately, this goal has not been achieved nor has mortality been reduced. However, the temporal aspects of a mechanical breath have not been considered. A brief expiration prevents alveolar collapse, and an extended inspiration can recruit the atelectatic lung over hours. Time-controlled adaptive ventilation (TCAV) is a novel ventilator approach to achieve these goals, since it considers many of the temporal aspects of dynamic lung mechanics.


Asunto(s)
Síndrome de Dificultad Respiratoria , Lesión Pulmonar Inducida por Ventilación Mecánica , Humanos , Pulmón , Respiración Artificial/efectos adversos , Fenómenos Fisiológicos Respiratorios , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control
2.
Am J Respir Crit Care Med ; 202(8): 1081-1087, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33054329

RESUMEN

Protective ventilation strategies for the injured lung currently revolve around the use of low Vt, ostensibly to avoid volutrauma, together with positive end-expiratory pressure to increase the fraction of open lung and reduce atelectrauma. Protective ventilation is currently applied in a one-size-fits-all manner, and although this practical approach has reduced acute respiratory distress syndrome deaths, mortality is still high and improvements are at a standstill. Furthermore, how to minimize ventilator-induced lung injury (VILI) for any given lung remains controversial and poorly understood. Here we present a hypothesis of VILI pathogenesis that potentially serves as a basis upon which minimally injurious ventilation strategies might be developed. This hypothesis is based on evidence demonstrating that VILI begins in isolated lung regions manifesting a Permeability-Originated Obstruction Response (POOR) in which alveolar leak leads to surfactant dysfunction and increases local tissue stresses. VILI progresses topographically outward from these regions in a POOR-get-POORer fashion unless steps are taken to interrupt it. We propose that interrupting the POOR-get-POORer progression of lung injury relies on two principles: 1) open the lung to minimize the presence of heterogeneity-induced stress concentrators that are focused around the regions of atelectasis, and 2) ventilate in a patient-dependent manner that minimizes the number of lung units that close during each expiration so that they are not forced to rerecruit during the subsequent inspiration. These principles appear to be borne out in both patient and animal studies in which expiration is terminated before derecruitment of lung units has enough time to occur.


Asunto(s)
Prevención Primaria/métodos , Atelectasia Pulmonar/prevención & control , Edema Pulmonar/prevención & control , Síndrome de Dificultad Respiratoria/fisiopatología , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Lesión Pulmonar Inducida por Ventilación Mecánica/fisiopatología , Enfermedad Aguda , Fenómenos Biomecánicos , Enfermedad Crónica , Femenino , Humanos , Masculino , Monitoreo Fisiológico , Pronóstico , Atelectasia Pulmonar/etiología , Edema Pulmonar/etiología , Síndrome de Dificultad Respiratoria/terapia , Pruebas de Función Respiratoria
3.
PLoS Comput Biol ; 15(10): e1007408, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31622332

RESUMEN

Surfactant Replacement Therapy (SRT), which involves instillation of a liquid-surfactant mixture directly into the lung airway tree, is a major therapeutic treatment in neonatal patients with respiratory distress syndrome (RDS). This procedure has proved to be remarkably effective in premature newborns, inducing a five-fold decrease of mortality in the past 35 years. Disappointingly, its use in adults for treating acute respiratory distress syndrome (ARDS) experienced initial success followed by failures. Our recently developed numerical model has demonstrated that transition from success to failure of SRT in adults could, in fact, have a fluid mechanical origin that is potentially reversible. Here, we present the first numerical simulations of surfactant delivery into a realistic asymmetric conducting airway tree of the rat lung and compare them with experimental results. The roles of dose volume (VD), flow rate, and multiple aliquot delivery are investigated. We find that our simulations of surfactant delivery in rat lungs are in good agreement with our experimental data. In particular, we show that the monopodial architecture of the rat airway tree plays a major role in surfactant delivery, contributing to the poor homogeneity of the end distribution of surfactant. In addition, we observe that increasing VD increases the amount of surfactant delivered to the acini after losing a portion to coating the involved airways, the coating cost volume, VCC. Finally, we quantitatively assess the improvement resulting from a multiple aliquot delivery, a method sometimes employed clinically, and find that a much larger fraction of surfactant reaches the alveolar regions in this case. This is the first direct qualitative and quantitative comparison of our numerical model with experimental studies, which enhances our previous predictions in adults and neonates while providing a tool for predicting, engineering, and optimizing patient-specific surfactant delivery in complex situations.


Asunto(s)
Surfactantes Pulmonares/administración & dosificación , Surfactantes Pulmonares/uso terapéutico , Animales , Simulación por Computador , Hidrodinámica , Pulmón/fisiología , Flujo Espiratorio Máximo/fisiología , Modelos Anatómicos , Modelos Estadísticos , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Ratas Wistar , Tensoactivos
4.
Crit Care ; 22(1): 136, 2018 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-29793554

RESUMEN

The pathophysiology of acute respiratory distress syndrome (ARDS) results in heterogeneous lung collapse, edema-flooded airways and unstable alveoli. These pathologic alterations in alveolar mechanics (i.e. dynamic change in alveolar size and shape with each breath) predispose the lung to secondary ventilator-induced lung injury (VILI). It is our viewpoint that the acutely injured lung can be recruited and stabilized with a mechanical breath until it heals, much like casting a broken bone until it mends. If the lung can be "casted" with a mechanical breath, VILI could be prevented and ARDS incidence significantly reduced.


Asunto(s)
Lesión Pulmonar Aguda/terapia , Respiración Artificial/efectos adversos , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Lesión Pulmonar Aguda/fisiopatología , Humanos , Pulmón/patología , Atelectasia Pulmonar/complicaciones , Atelectasia Pulmonar/fisiopatología , Atelectasia Pulmonar/prevención & control , Respiración Artificial/métodos , Síndrome de Dificultad Respiratoria/fisiopatología , Síndrome de Dificultad Respiratoria/terapia , Lesión Pulmonar Inducida por Ventilación Mecánica/fisiopatología
6.
Tohoku J Exp Med ; 231(2): 127-38, 2013 10.
Artículo en Inglés | MEDLINE | ID: mdl-24126241

RESUMEN

Autophagy is a protective cellular mechanism in response to various stresses, including sepsis. Sepsis is defined as systemic inflammation by infection. Surfactant protein A and D (SP-A and SP-D) are involved in host defense, regulation of inflammation, and homeostasis, but their roles in the autophagic activity and relevant gene expression in sepsis are unclear. In this study, mice lacking SP-A and SP-D (SP-A/D KO mice) and background-matched wild-type (WT) C57BL/6 mice underwent either cecal ligation and puncture (CLP) or sham surgery. The results showed that SP-A/D KO mice had lower mortality than WT mice in CLP sepsis. Liver tissues showed marked pathological changes in both septic SP-A/D KO and WT mice 24 hrs after CLP treatment; and quantitative analysis of liver histopathology revealed significant difference between septic SP-A/D and septic WT mice. SP-A/D KO mice had higher basal and sepsis-induced level of autophagy than WT mice (p < 0.05), as judged by Western blot and electron microscopic analyses. The expression of 84 autophagy-related genes revealed differential basal and sepsis-induced gene expression between SP-A/D KO and WT mice. The expression increased in three genes and decreased in four genes in septic WT mice, as compared to septic SP-A/D KO mice (p < 0.05). Furthermore, differential responses to sepsis between SP-A/D KO and WT mice were found in six signaling pathways related to autophagy and apoptosis. Therefore, enhanced autophagic activity improves the survival of septic SP-A/D KO mice through the regulation of liver autophagy/apoptosis-related gene expression and signaling pathway activation.


Asunto(s)
Autofagia/fisiología , Hígado/fisiopatología , Proteína A Asociada a Surfactante Pulmonar/deficiencia , Proteína D Asociada a Surfactante Pulmonar/deficiencia , Sepsis/fisiopatología , Transducción de Señal/fisiología , Análisis de Varianza , Animales , Western Blotting , Hepatocitos/fisiología , Hepatocitos/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética
7.
Sci Rep ; 13(1): 393, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624251

RESUMEN

Salmonella enterica serovar Typhi is the causative agent of typhoid fever restricted to humans and does not replicate in commonly used inbred mice. Genetic variation in humans is far greater and more complex than that in a single inbred strain of mice. The Collaborative Cross (CC) is a large panel of recombinant inbred strains which has a wider range of genetic diversity than laboratory inbred mouse strains. We found that the CC003/Unc and CC053/Unc strains are permissive to intraperitoneal but not oral route of S. Typhi infection and show histopathological changes characteristic of human typhoid. These CC strains are immunocompetent, and immunization induces antigen-specific responses that can kill S. Typhi in vitro and control S. Typhi in vivo. Our results indicate that CC003/Unc and CC053/Unc strains can help identify the genetic basis for typhoid susceptibility, S. Typhi virulence mechanism(s) in vivo, and serve as a preclinical mammalian model system to identify effective vaccines and therapeutics strategies.


Asunto(s)
Fiebre Tifoidea , Vacunas Tifoides-Paratifoides , Animales , Humanos , Ratones , Salmonella typhi , Ratones de Colaboración Cruzada , Mamíferos
8.
J Appl Physiol (1985) ; 133(5): 1093-1105, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36135956

RESUMEN

Ventilator-induced lung injury (VILI) is a significant risk for patients with acute respiratory distress syndrome (ARDS). Management of the patient with ARDS is currently dominated by the use of low tidal volume mechanical ventilation, the presumption being that this mitigates overdistension (OD) injury to the remaining normal lung tissue. Evidence exists, however, that it may be more important to avoid cyclic recruitment and derecruitment (RD) of lung units, although the relative roles of OD and RD in VILI remain unclear. Forty pigs had a heterogeneous lung injury induced by Tween instillation and were randomized into four groups (n = 10 each) with higher (↑) or lower (↓) levels of OD and/or RD imposed using airway pressure release ventilation (APRV). OD was increased by setting inspiratory airway pressure to 40 cmH2O and lessened with 28 cmH2O. RD was attenuated using a short duration of expiration (∼0.45 s) and increased with a longer duration (∼1.0 s). All groups developed mild ARDS following injury. RD ↑ OD↑ caused the greatest degree of lung injury as determined by [Formula: see text]/[Formula: see text] ratio (226.1 ± 41.4 mmHg). RD ↑ OD↓ ([Formula: see text]/[Formula: see text]= 333.9 ± 33.1 mmHg) and RD ↓ OD↑ ([Formula: see text]/[Formula: see text] = 377.4 ± 43.2 mmHg) were both moderately injurious, whereas RD ↓ OD↓ ([Formula: see text]/[Formula: see text] = 472.3 ± 22.2 mmHg; P < 0.05) was least injurious. Both tidal volume and driving pressure were essentially identical in the RD ↑ OD↓ and RD ↓ OD↑ groups. We, therefore, conclude that considerations of expiratory time may be at least as important as pressure for safely ventilating the injured lung.NEW & NOTEWORTHY In a large animal model of ARDS, recruitment/derecruitment caused greater VILI than overdistension, whereas both mechanisms together caused severe lung damage. These findings suggest that eliminating cyclic recruitment and derecruitment during mechanical ventilation should be a preeminent management goal for the patient with ARDS. The airway pressure release ventilation (APRV) mode of mechanical ventilation can achieve this if delivered with an expiratory duration (TLow) that is brief enough to prevent derecruitment at end expiration.


Asunto(s)
Lesión Pulmonar Aguda , Síndrome de Dificultad Respiratoria , Lesión Pulmonar Inducida por Ventilación Mecánica , Animales , Lesión Pulmonar Aguda/etiología , Pulmón , Respiración Artificial/efectos adversos , Síndrome de Dificultad Respiratoria/terapia , Porcinos , Volumen de Ventilación Pulmonar , Lesión Pulmonar Inducida por Ventilación Mecánica/etiología
9.
J Surg Res ; 166(1): e71-81, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21195426

RESUMEN

BACKGROUND: Ventilator strategies that maintain an "open lung" have shown promise in treating hypoxemic patients. We compared three "open lung" strategies with standard of care low tidal volume ventilation and hypothesized that each would diminish physiologic and histopathologic evidence of ventilator induced lung injury (VILI). MATERIALS AND METHODS: Acute lung injury (ALI) was induced in 22 pigs via 5% Tween and 30-min of injurious ventilation. Animals were separated into four groups: (1) low tidal volume ventilation (LowVt -6 mL/kg); (2) high-frequency oscillatory ventilation (HFOV); (3) airway pressure release ventilation (APRV); or (4) recruitment and decremental positive-end expiratory pressure (PEEP) titration (RM+OP) and followed for 6 h. Lung and hemodynamic function was assessed on the half-hour. Bronchoalveolar lavage fluid (BALF) was analyzed for cytokines. Lung tissue was harvested for histologic analysis. RESULTS: APRV and HFOV increased PaO(2)/FiO(2) ratio and improved ventilation. APRV reduced BALF TNF-α and IL-8. HFOV caused an increase in airway hemorrhage. RM+OP decreased SvO(2), increased PaCO(2), with increased inflammation of lung tissue. CONCLUSION: None of the "open lung" techniques were definitively superior to LowVt with respect to VILI; however, APRV oxygenated and ventilated more effectively and reduced cytokine concentration compared with LowVt with nearly indistinguishable histopathology. These data suggest that APRV may be of potential benefit to critically ill patients but other "open lung" strategies may exacerbate injury.


Asunto(s)
Lesión Pulmonar Aguda/fisiopatología , Lesión Pulmonar Aguda/terapia , Respiración Artificial/métodos , Volumen de Ventilación Pulmonar/fisiología , Lesión Pulmonar Aguda/patología , Animales , Apoptosis/fisiología , Líquido del Lavado Bronquioalveolar/inmunología , Fenómenos Fisiológicos Cardiovasculares , Presión de las Vías Aéreas Positiva Contínua/métodos , Modelos Animales de Enfermedad , Ventilación de Alta Frecuencia/métodos , Interleucina-8/metabolismo , Pulmón/patología , Pulmón/fisiología , Respiración con Presión Positiva/métodos , Sus scrofa , Factor de Necrosis Tumoral alfa/metabolismo
10.
J Surg Res ; 166(1): e59-69, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21193206

RESUMEN

BACKGROUND: Although many sepsis treatments have shown efficacy in acute animal models, at present only activated protein C is effective in humans. The likely reason for this discrepancy is that most of the animal models used for preclinical testing do not accurately replicate the complex pathogenesis of human sepsis. Our objective in this study was to develop a clinically applicable model of severe sepsis and gut ischemia/reperfusion (I/R) that would cause multiple organ injury over a period of 48 h. MATERIALS AND METHODS: Anesthetized, instrumented, and ventilated pigs were subjected to a "two-hit" injury by placement of a fecal clot through a laparotomy and by clamping the superior mesenteric artery (SMA) for 30 min. The animals were monitored for 48 h. Wide spectrum antibiotics and intravenous fluids were given to maintain hemodynamic status. FiO(2) was increased in response to oxygen desaturation. Twelve hours following injury, a drain was placed in the laparotomy wound. Extensive hemodynamic, lung, kidney, liver, and renal function measurements and serial measurements of arterial and mixed venous blood gases were made. Bladder pressure was measured as a surrogate for intra-peritoneal pressure to identify the development of the abdominal compartment syndrome (ACS). Plasma and peritoneal ascites cytokine concentration were measured at regular intervals. Tissues were harvested and fixed at necropsy for detailed morphometric analysis. RESULTS: Polymicrobial sepsis developed in all animals. There was a progressive deterioration of organ function over the 48 h. The lung, kidney, liver, and intestine all demonstrated clinical and histopathologic injury. Acute lung injury (ALI) and ACS developed by consensus definitions. Increases in multiple cytokines in serum and peritoneal fluid paralleled the dysfunction found in major organs. CONCLUSION: This animal model of Sepsis+I/R replicates the systemic inflammation and dysfunction of the major organ systems that is typically seen in human sepsis and trauma patients. The model should be useful in deciphering the complex pathophysiology of septic shock as it transitions to end-organ injury thus allowing sophisticated preclinical studies on potential treatments.


Asunto(s)
Modelos Animales de Enfermedad , Insuficiencia Multiorgánica/fisiopatología , Daño por Reperfusión/fisiopatología , Choque Séptico/fisiopatología , Sus scrofa , Animales , Análisis de los Gases de la Sangre , Presión Sanguínea/fisiología , Citocinas/sangre , Electrólitos/sangre , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Estimación de Kaplan-Meier , Riñón/fisiología , Insuficiencia Multiorgánica/mortalidad , Insuficiencia Multiorgánica/terapia , Presión Esfenoidal Pulmonar/fisiología , Daño por Reperfusión/mortalidad , Daño por Reperfusión/terapia , Choque Séptico/mortalidad , Choque Séptico/terapia
11.
J Appl Physiol (1985) ; 130(3): 877-891, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33444117

RESUMEN

The worldwide pandemic caused by the SARS-CoV-2 virus has resulted in over 84,407,000 cases, with over 1,800,000 deaths when this paper was submitted, with comorbidities such as gender, race, age, body mass, diabetes, and hypertension greatly exacerbating mortality. This review will analyze the rapidly increasing knowledge of COVID-19-induced lung pathophysiology. Although controversial, the acute respiratory distress syndrome (ARDS) associated with COVID-19 (CARDS) seems to present as two distinct phenotypes: type L and type H. The "L" refers to low elastance, ventilation/perfusion ratio, lung weight, and recruitability, and the "H" refers to high pulmonary elastance, shunt, edema, and recruitability. However, the LUNG-SAFE (Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure) and ESICM (European Society of Intensive Care Medicine) Trials Groups have shown that ∼13% of the mechanically ventilated non-COVID-19 ARDS patients have the type-L phenotype. Other studies have shown that CARDS and ARDS respiratory mechanics overlap and that standard ventilation strategies apply to these patients. The mechanisms causing alterations in pulmonary perfusion could be caused by some combination of 1) renin-angiotensin system dysregulation, 2) thrombosis caused by loss of endothelial barrier, 3) endothelial dysfunction causing loss of hypoxic pulmonary vasoconstriction perfusion control, and 4) hyperperfusion of collapsed lung tissue that has been directly measured and supported by a computational model. A flowchart has been constructed highlighting the need for personalized and adaptive ventilation strategies, such as the time-controlled adaptive ventilation method, to set and adjust the airway pressure release ventilation mode, which recently was shown to be effective at improving oxygenation and reducing inspiratory fraction of oxygen, vasopressors, and sedation in patients with COVID-19.


Asunto(s)
Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/patología , COVID-19/complicaciones , COVID-19/patología , Lesión Pulmonar Aguda/virología , Animales , Presión de las Vías Aéreas Positiva Contínua/métodos , Humanos , Hipoxia/patología , Hipoxia/virología , Pulmón/patología , Pulmón/virología , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/virología , SARS-CoV-2/patogenicidad , Vasoconstricción/fisiología
12.
Front Physiol ; 12: 805620, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35369685

RESUMEN

Pediatric acute respiratory distress syndrome (PARDS) remains a significant cause of morbidity and mortality, with mortality rates as high as 50% in children with severe PARDS. Despite this, pediatric lung injury and mechanical ventilation has been poorly studied, with the majority of investigations being observational or retrospective and with only a few randomized controlled trials to guide intensivists. The most recent and universally accepted guidelines for pediatric lung injury are based on consensus opinion rather than objective data. Therefore, most neonatal and pediatric mechanical ventilation practices have been arbitrarily adapted from adult protocols, neglecting the differences in lung pathophysiology, response to injury, and co-morbidities among the three groups. Low tidal volume ventilation has been generally accepted for pediatric patients, even in the absence of supporting evidence. No target tidal volume range has consistently been associated with outcomes, and compliance with delivering specific tidal volume ranges has been poor. Similarly, optimal PEEP has not been well-studied, with a general acceptance of higher levels of F i O2 and less aggressive PEEP titration as compared with adults. Other modes of ventilation including airway pressure release ventilation and high frequency ventilation have not been studied in a systematic fashion and there is too little evidence to recommend supporting or refraining from their use. There have been no consistent outcomes among studies in determining optimal modes or methods of setting them. In this review, the studies performed to date on mechanical ventilation strategies in neonatal and pediatric populations will be analyzed. There may not be a single optimal mechanical ventilation approach, where the best method may simply be one that allows for a personalized approach with settings adapted to the individual patient and disease pathophysiology. The challenges and barriers to conducting well-powered and robust multi-institutional studies will also be addressed, as well as reconsidering outcome measures and study design.

13.
J Surg Res ; 164(1): e147-53, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20851418

RESUMEN

BACKGROUND: High frequency oscillatory ventilation (HFOV) is frequently utilized for patients with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). However, precise criteria to titrate mean airway pressure (mPaw) and FiO(2) as the patient's condition improves are lacking. We hypothesized that reducing mPaw and FiO(2) too quickly after reaching target arterial oxygen saturation levels would promote ventilator induced lung injury (VILI). MATERIALS AND METHODS: ALI was induced by instilling 3% Tween 20. Pigs were placed supine and received 30 min of nonprotective ventilation. Pigs were separated into two groups: HFOV constant (HFOVC, n = 3) = constant mPaw and FiO(2) for the duration; HFOV titrated (HFOVT, n = 4) = FiO(2) and/or mPaw were reduced every 30 min if the oxygen saturation remained between 88%-95%. Hemodynamic and pulmonary measurements were made at baseline, after lung injury, and every 30 min during the 6-h study. Lung histopathology was determined by quantifying alveolar hyperdistension, fibrin, congestion, atelectasis, and polymorphonuclear leukocyte (PMN) infiltration. RESULTS: Oxygenation was significantly lower in the HFOVT group compared to the HFOVC group after 6 h. Lung histopathology was significantly increased in the HFOVT group in the following categories: PMN infiltration, alveolar hyperdistension, congestion, and fibrin deposition. CONCLUSIONS: Rapid reduction of mPaw and FiO(2) in our ALI model significantly reduced oxygenation, but, more importantly, caused VILI as evidenced by increased lung inflammation and alveolar hyperdistension. Specific criteria for titration of mPaw and inspired oxygen are needed to maximize the lung protective effects of HFOV while maintaining adequate gas exchange.


Asunto(s)
Lesión Pulmonar Aguda/terapia , Ventilación de Alta Frecuencia/métodos , Terapia por Inhalación de Oxígeno/métodos , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/fisiopatología , Animales , Análisis de los Gases de la Sangre , Presión Sanguínea/fisiología , Modelos Animales de Enfermedad , Frecuencia Cardíaca/fisiología , Presión , Alveolos Pulmonares/patología , Atelectasia Pulmonar/patología , Atelectasia Pulmonar/fisiopatología , Atelectasia Pulmonar/terapia , Circulación Pulmonar , Sus scrofa
14.
J Surg Res ; 162(2): 250-7, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19560160

RESUMEN

BACKGROUND: Patients with acute respiratory distress syndrome (ARDS) are often ventilated with high airway pressure. Brief loss of airway pressure may lead to an extended loss of oxygenation. While using high frequency oscillatory ventilation (HFOV) in a porcine acute lung injury model, two animals became disconnected from the ventilator with subsequent loss of airway pressure. We compared the two disconnected animals to the two animals that remained connected to determine causes for the extended reduction in oxygenation. METHODS: ARDS was induced using 5% Tween. Thirty min of nonprotective ventilation (NPV) followed before placing the pigs on HFOV. Measurements were made at baseline, after lung injury, and every 30min during the 6-h study. Disconnections were treated by hand-ventilation and a recruitment maneuver before being placed back on HFOV. The lungs were histologically analyzed and wet/dry weights were measured to determine lung edema. RESULTS: Hemodynamics and lung function were similar in all pigs at baseline, after injury, and following NPV. The animals that remained connected to the oscillator showed a continued improvement in PaO(2)/FiO(2) (P/F) ratio throughout the study. The animals that experienced the disconnection had a significant loss of lung function that never recovered. The disconnect animals had more diffuse alveolar disease on histologic analysis. CONCLUSIONS: A significant fall in lung function results following disconnection from HFOV, which remains depressed for a substantial period of time despite efforts to reopen the lung. Dispersion of edema fluid is a possible mechanism for the protracted loss of lung function.


Asunto(s)
Respiración Artificial/efectos adversos , Respiración Artificial/métodos , Síndrome de Dificultad Respiratoria/terapia , Anestesia General , Animales , Análisis de los Gases de la Sangre , Presión Sanguínea , Modelos Animales de Enfermedad , Diuresis , Frecuencia Cardíaca , Hemodinámica , Humanos , Lesión Pulmonar/fisiopatología , Modelos Animales , Tamaño de los Órganos , Arteria Pulmonar/fisiología , Arteria Pulmonar/fisiopatología , Pruebas de Función Respiratoria , Porcinos
15.
J Surg Res ; 159(1): e17-24, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20036396

RESUMEN

BACKGROUND: ARDSnet standards limit plateau pressure (Pplat) to reduce ventilator induced lung injury (VILI). Transpulmonary pressure (Ptp) [Pplat-pleural pressure (Ppl)], not Pplat, is the distending pressure of the lung. Lung distention can be affected by increased intra-abdominal pressure (IAP) and atelectasis. We hypothesized that the changes in distention caused by increases in IAP and atelectasis would be reflected by Ptp but independent of Pplat. METHODS: In Yorkshire pigs, esophageal pressure (Pes) was measured with a balloon catheter as a surrogate for Ppl under two experimental conditions: (1) high IAP group (n=5), where IAP was elevated by CO2 insufflation in 5 mm Hg steps from 0 to 30 mm Hg; and (2) Atelectasis group (n=5), where a double lumen endotracheal tube allowed clamping and degassing of either lung by O2 absorption. Lung collapse was estimated by increases in pulmonary shunt fraction. RESULTS: High IAP: Sequential increments in IAP caused a linear increase in Pplat (r2=0.754, P<0.0001). Ptp did not increase (r2=0.014, P=0.404) with IAP due to the concomitant increase in Pes (r2=0.726, P<0.0001). Partial Lung Collapse: There was no significant difference in Pplat between the atelectatic (21.83+/-0.63 cm H2O) and inflated lung (22.06+/-0.61 cmH2O, P<0.05). Partial lung collapse caused a significant decrease in Pes (11.32+/-1.11 mm Hg) compared with inflation (15.89+/-0.72 mm Hg, P<0.05) resulting in a significant increase in Ptp (inflated=5.97+/-0.72 mm Hg; collapsed=10.55+/-1.53 mm Hg, P<0.05). CONCLUSIONS: Use of Pplat to set ventilation may under-ventilate patients with intra-abdominal hypertension and over-distend the lungs of patients with atelectasis. Thus, Ptp must be used to accurately set mechanical ventilation in the critically ill.


Asunto(s)
Pulmón/fisiología , Presión , Atelectasia Pulmonar/fisiopatología , Respiración Artificial/normas , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Abdomen/fisiopatología , Animales , Cateterismo , Hipertensión/fisiopatología , Masculino , Porcinos
16.
Front Physiol ; 11: 233, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32265735

RESUMEN

Morbidity and mortality associated with lung injury remains disappointingly unchanged over the last two decades, in part due to the current reliance on lung macro-parameters set on the ventilator instead of considering the micro-environment and the response of the alveoli and alveolar ducts to ventilator adjustments. The response of alveoli and alveolar ducts to mechanical ventilation modes cannot be predicted with current bedside methods of assessment including lung compliance, oxygenation, and pressure-volume curves. Alveolar tidal volumes (Vt) are less determined by the Vt set on the mechanical ventilator and more dependent on the number of recruited alveoli available to accommodate that Vt and their heterogeneous mechanical properties, such that high lung Vt can lead to a low alveolar Vt and low Vt can lead to high alveolar Vt. The degree of alveolar heterogeneity that exists cannot be predicted based on lung calculations that average the individual alveolar Vt and compliance. Finally, the importance of time in promoting alveolar stability, specifically the inspiratory and expiratory times set on the ventilator, are currently under-appreciated. In order to improve outcomes related to lung injury, the respiratory physiology of the individual patient, specifically at the level of the alveolus, must be targeted. With experimental data, this review highlights some of the known mechanical ventilation adjustments that are helpful or harmful at the level of the alveolus.

17.
Front Physiol ; 11: 227, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32265734

RESUMEN

Acute respiratory distress syndrome (ARDS) causes a heterogeneous lung injury and remains a serious medical problem, with one of the only treatments being supportive care in the form of mechanical ventilation. It is very difficult, however, to mechanically ventilate the heterogeneously damaged lung without causing secondary ventilator-induced lung injury (VILI). The acutely injured lung becomes time and pressure dependent, meaning that it takes more time and pressure to open the lung, and it recollapses more quickly and at higher pressure. Current protective ventilation strategies, ARDSnet low tidal volume (LVt) and the open lung approach (OLA), have been unsuccessful at further reducing ARDS mortality. We postulate that this is because the LVt strategy is constrained to ventilating a lung with a heterogeneous mix of normal and focalized injured tissue, and the OLA, although designed to fully open and stabilize the lung, is often unsuccessful at doing so. In this review we analyzed the pathophysiology of ARDS that renders the lung susceptible to VILI. We also analyzed the alterations in alveolar and alveolar duct mechanics that occur in the acutely injured lung and discussed how these alterations are a key mechanism driving VILI. Our analysis suggests that the time component of each mechanical breath, at both inspiration and expiration, is critical to normalize alveolar mechanics and protect the lung from VILI. Animal studies and a meta-analysis have suggested that the time-controlled adaptive ventilation (TCAV) method, using the airway pressure release ventilation mode, eliminates the constraints of ventilating a lung with heterogeneous injury, since it is highly effective at opening and stabilizing the time- and pressure-dependent lung. In animal studies it has been shown that by "casting open" the acutely injured lung with TCAV we can (1) reestablish normal expiratory lung volume as assessed by direct observation of subpleural alveoli; (2) return normal parenchymal microanatomical structural support, known as alveolar interdependence and parenchymal tethering, as assessed by morphometric analysis of lung histology; (3) facilitate regeneration of normal surfactant function measured as increases in surfactant proteins A and B; and (4) significantly increase lung compliance, which reduces the pathologic impact of driving pressure and mechanical power at any given tidal volume.

18.
Ann Intensive Care ; 10(1): 3, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31907704

RESUMEN

Mortality in acute respiratory distress syndrome (ARDS) remains unacceptably high at approximately 39%. One of the only treatments is supportive: mechanical ventilation. However, improperly set mechanical ventilation can further increase the risk of death in patients with ARDS. Recent studies suggest that ventilation-induced lung injury (VILI) is caused by exaggerated regional lung strain, particularly in areas of alveolar instability subject to tidal recruitment/derecruitment and stress-multiplication. Thus, it is reasonable to expect that if a ventilation strategy can maintain stable lung inflation and homogeneity, regional dynamic strain would be reduced and VILI attenuated. A time-controlled adaptive ventilation (TCAV) method was developed to minimize dynamic alveolar strain by adjusting the delivered breath according to the mechanical characteristics of the lung. The goal of this review is to describe how the TCAV method impacts pathophysiology and protects lungs with, or at high risk of, acute lung injury. We present work from our group and others that identifies novel mechanisms of VILI in the alveolar microenvironment and demonstrates that the TCAV method can reduce VILI in translational animal ARDS models and mortality in surgical/trauma patients. Our TCAV method utilizes the airway pressure release ventilation (APRV) mode and is based on opening and collapsing time constants, which reflect the viscoelastic properties of the terminal airspaces. Time-controlled adaptive ventilation uses inspiratory and expiratory time to (1) gradually "nudge" alveoli and alveolar ducts open with an extended inspiratory duration and (2) prevent alveolar collapse using a brief (sub-second) expiratory duration that does not allow time for alveolar collapse. The new paradigm in TCAV is configuring each breath guided by the previous one, which achieves real-time titration of ventilator settings and minimizes instability induced tissue damage. This novel methodology changes the current approach to mechanical ventilation, from arbitrary to personalized and adaptive. The outcome of this approach is an open and stable lung with reduced regional strain and greater lung protection.

19.
J Surg Res ; 154(1): 85-90, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19201423

RESUMEN

The current immunosuppressive drugs are successful in prolonging allograft survival but fail to achieve transplantation tolerance or prevent chronic rejection. Consequently, there is ongoing research to develop novel combinatorial therapies that are more efficacious in prolonging allograft survival as well as induce tolerance toward the transplanted organ. The present study aims to study the efficacy of green tea extract (GTE) in combination with low dose cyclosporine A (CyA) in prolonging allograft survival in mice. Numerous studies have reported the anti-inflammatory and immunomodulatory properties of GTE and its various catechin components. GTE is also known to attenuate CyA induced nephrotoxicity. Therefore, we hypothesized that GTE alone or in combination with CyA will prolong graft survival. Our study demonstrates that GTE in combination with low dose CyA significantly prolongs graft survival as well as increase the production of immunosuppressive cytokine, IL-10. GTE also decreases CyA induced high TGF-beta production, which is incriminated in CyA induced nephrotoxicity. We also observed that GTE inhibits both nonspecific and antigen-specific proliferation of T cells in vitro. These results indicate the potential of GTE as an adjunctive therapy in combination with CyA to prolong allograft survival and to reduce CyA induced nephrotoxicity.


Asunto(s)
Ciclosporina/uso terapéutico , Supervivencia de Injerto/efectos de los fármacos , Trasplante de Corazón/fisiología , Extractos Vegetales/uso terapéutico , Trasplante Homólogo/fisiología , Animales , Animales Recién Nacidos , Camellia sinensis , Citocinas/análisis , Ensayo de Inmunoadsorción Enzimática , Femenino , Trasplante de Corazón/inmunología , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Trasplante Homólogo/inmunología
20.
Eur Respir Rev ; 28(152)2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-30996041

RESUMEN

Airway pressure release ventilation (APRV) is a ventilator mode that has previously been considered a rescue mode, but has gained acceptance as a primary mode of ventilation. In clinical series and experimental animal models of extrapulmonary acute respiratory distress syndrome (ARDS), the early application of APRV was able to prevent the development of ARDS. Recent experimental evidence has suggested mechanisms by which APRV, using the time-controlled adaptive ventilation (TCAV) protocol, may reduce lung injury, including: 1) an improvement in alveolar recruitment and homogeneity; 2) reduction in alveolar and alveolar duct micro-strain and stress-risers; 3) reduction in alveolar tidal volumes; and 4) recruitment of the chest wall by combating increased intra-abdominal pressure. This review examines these studies and discusses our current understanding of the pleiotropic mechanisms by which TCAV protects the lung. APRV set according to the TCAV protocol has been misunderstood and this review serves to highlight the various protective physiological and mechanical effects it has on the lung, so that its clinical application may be broadened.


Asunto(s)
Presión de las Vías Aéreas Positiva Contínua , Alveolos Pulmonares/fisiopatología , Respiración Artificial/métodos , Respiración , Síndrome de Dificultad Respiratoria/prevención & control , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Animales , Presión de las Vías Aéreas Positiva Contínua/efectos adversos , Humanos , Respiración Artificial/efectos adversos , Síndrome de Dificultad Respiratoria/diagnóstico , Síndrome de Dificultad Respiratoria/epidemiología , Síndrome de Dificultad Respiratoria/fisiopatología , Factores de Riesgo , Factores de Tiempo , Resultado del Tratamiento , Lesión Pulmonar Inducida por Ventilación Mecánica/diagnóstico , Lesión Pulmonar Inducida por Ventilación Mecánica/epidemiología , Lesión Pulmonar Inducida por Ventilación Mecánica/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA