Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Biol Chem ; 300(1): 105583, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141770

RESUMEN

Membrane polyphosphoinositides (PPIs) are lipid-signaling molecules that undergo metabolic turnover and influence a diverse range of cellular functions. PPIs regulate the activity and/or spatial localization of a number of actin-binding proteins (ABPs) through direct interactions; however, it is much less clear whether ABPs could also be an integral part in regulating PPI signaling. In this study, we show that ABP profilin1 (Pfn1) is an important molecular determinant of the cellular content of PI(4,5)P2 (the most abundant PPI in cells). In growth factor (EGF) stimulation setting, Pfn1 depletion does not impact PI(4,5)P2 hydrolysis but enhances plasma membrane (PM) enrichment of PPIs that are produced downstream of activated PI3-kinase, including PI(3,4,5)P3 and PI(3,4)P2, the latter consistent with increased PM recruitment of SH2-containing inositol 5' phosphatase (SHIP2) (a key enzyme for PI(3,4)P2 biosynthesis). Although Pfn1 binds to PPIs in vitro, our data suggest that Pfn1's affinity to PPIs and PM presence in actual cells, if at all, is negligible, suggesting that Pfn1 is unlikely to directly compete with SHIP2 for binding to PM PPIs. Additionally, we provide evidence for Pfn1's interaction with SHIP2 in cells and modulation of this interaction upon EGF stimulation, raising an alternative possibility of Pfn1 binding as a potential restrictive mechanism for PM recruitment of SHIP2. In conclusion, our findings challenge the dogma of Pfn1's binding to PM by PPI interaction, uncover a previously unrecognized role of Pfn1 in PI(4,5)P2 homeostasis and provide a new mechanistic avenue of how an ABP could potentially impact PI3K signaling byproducts in cells through lipid phosphatase control.


Asunto(s)
Fosfatidilinositoles , Profilinas , Factor de Crecimiento Epidérmico/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Fosfatidilinositoles/metabolismo , Humanos , Células HEK293 , Profilinas/metabolismo
2.
J Biol Chem ; 299(8): 105044, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37451478

RESUMEN

Overexpression of actin-binding protein profilin-1 (Pfn1) correlates with advanced disease features and adverse clinical outcome of patients with clear cell renal carcinoma, the most prevalent form of renal cancer. We previously reported that Pfn1 is predominantly overexpressed in tumor-associated vascular endothelial cells in human clear cell renal carcinoma. In this study, we combined in vivo strategies involving endothelial cell-specific depletion and overexpression of Pfn1 to demonstrate a role of vascular endothelial Pfn1 in promoting tumorigenicity and enabling progressive growth and metastasis of renal carcinoma cells in a syngeneic orthotopic mouse model of kidney cancer. We established an important role of endothelial Pfn1 in tumor angiogenesis and further identified endothelial Pfn1-dependent regulation of several pro- (VEGF, SERPINE1, CCL2) and anti-angiogenic factors (platelet factor 4) in vivo. Endothelial Pfn1 overexpression increases tumor infiltration by macrophages and concomitantly diminishes tumor infiltration by T cells including CD8+ T cells in vivo, correlating with the pattern of endothelial Pfn1-dependent changes in tumor abundance of several prominent immunomodulatory cytokines. These data were also corroborated by multiplexed quantitative immunohistochemistry and immune deconvolution analyses of RNA-seq data of clinical samples. Guided by Upstream Regulator Analysis of tumor transcriptome data, we further established endothelial Pfn1-induced Hif1α elevation and suppression of STAT1 activation. In conclusion, this study demonstrates for the first time a direct causal relationship between vascular endothelial Pfn1 dysregulation, immunosuppressive tumor microenvironment, and disease progression with mechanistic insights in kidney cancer. Our study also provides a conceptual basis for targeting Pfn1 for therapeutic benefit in kidney cancer.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Profilinas , Microambiente Tumoral , Animales , Humanos , Ratones , Carcinoma de Células Renales/genética , Células Endoteliales/metabolismo , Neoplasias Renales/genética , Profilinas/genética , Profilinas/metabolismo , Progresión de la Enfermedad
3.
J Cell Sci ; 134(9)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33961053

RESUMEN

Dynamic remodeling of the actin cytoskeleton is an essential feature for virtually all actin-dependent cellular processes, including cell migration, cell cycle progression, chromatin remodeling and gene expression, and even the DNA damage response. An altered actin cytoskeleton is a structural hallmark associated with numerous pathologies ranging from cardiovascular diseases to immune disorders, neurological diseases and cancer. The actin cytoskeleton in cells is regulated through the orchestrated actions of a myriad of actin-binding proteins. In this Review, we provide a brief overview of the structure and functions of the actin-monomer-binding protein profilin-1 (Pfn1) and then discuss how dysregulated expression of Pfn1 contributes to diseases associated with the cardiovascular system.


Asunto(s)
Enfermedades Cardiovasculares , Profilinas , Citoesqueleto de Actina/genética , Actinas/genética , Enfermedades Cardiovasculares/genética , Humanos , Proteínas de Microfilamentos , Profilinas/genética
4.
J Cell Physiol ; 237(5): 2387-2403, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35342955

RESUMEN

Mitochondria perform diverse functions in the cell and their roles during processes such as cell survival, differentiation, and migration are increasingly being appreciated. Mitochondrial and actin cytoskeletal networks not only interact with each other, but this multifaceted interaction shapes their functional dynamics. The interrelation between mitochondria and the actin cytoskeleton extends far beyond the requirement of mitochondrial ATP generation to power actin dynamics, and impinges upon several major aspects of cellular physiology. Being situated at the hub of cell signaling pathways, mitochondrial function can alter the activity of actin regulatory proteins and therefore modulate the processes downstream of actin dynamics such as cellular migration. As we will discuss, this regulation is highly nuanced and operates at multiple levels allowing mitochondria to occupy a strategic position in the regulation of migration, as well as pathological events that rely on aberrant cell motility such as cancer metastasis. In this review, we summarize the crosstalk that exists between mitochondria and actin regulatory proteins, and further emphasize on how this interaction holds importance in cell migration in normal as well as dysregulated scenarios as in cancer.


Asunto(s)
Actinas , Neoplasias , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Movimiento Celular , Humanos , Mitocondrias/metabolismo , Neoplasias/metabolismo
5.
J Biol Chem ; 295(28): 9618-9629, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32444495

RESUMEN

Angiogenesis-mediated neovascularization in the eye is usually associated with visual complications. Pathological angiogenesis is particularly prominent in the retina in the settings of proliferative diabetic retinopathy, in which it can lead to permanent loss of vision. In this study, by bioinformatics analyses, we provide evidence for elevated expression of actin-binding protein PFN1 (profilin1) in the retinal vascular endothelial cells (VECs) of individuals with proliferative diabetic retinopathy, findings further supported by gene expression analyses for PFN1 in experimentally induced abnormal retinal neovascularization in an oxygen-induced retinopathy murine model. We observed that in a conditional knockout mouse model, postnatal deletion of the Pfn1 gene in VECs leads to defects in tip cell activity (marked by impaired filopodial protrusions) and reduced vascular sprouting, resulting in hypovascularization during developmental angiogenesis in the retina. Consistent with these findings, an investigative small molecule compound targeting the PFN1-actin interaction reduced random motility, proliferation, and cord morphogenesis of retinal VECs in vitro and experimentally induced abnormal retinal neovascularization in vivo In summary, these findings provide the first direct in vivo evidence that PFN1 is required for formation of actin-based protrusive structures and developmental angiogenesis in the retina. The proof of concept of susceptibility of abnormal angiogenesis to small molecule intervention of PFN1-actin interaction reported here lays a conceptual foundation for targeting PFN1 as a possible strategy in angiogenesis-dependent retinal diseases.


Asunto(s)
Movimiento Celular , Proliferación Celular , Células Endoteliales/metabolismo , Profilinas/metabolismo , Neovascularización Retiniana/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Células Endoteliales/patología , Humanos , Ratones , Ratones Noqueados , Oxígeno/metabolismo , Profilinas/genética , Neovascularización Retiniana/genética , Neovascularización Retiniana/patología , Neovascularización Retiniana/terapia
6.
J Biol Chem ; 295(46): 15636-15649, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32883810

RESUMEN

Clear-cell renal cell carcinoma (ccRCC), the most common subtype of renal cancer, has a poor clinical outcome. A hallmark of ccRCC is genetic loss-of-function of VHL (von Hippel-Lindau) that leads to a highly vascularized tumor microenvironment. Although many ccRCC patients initially respond to antiangiogenic therapies, virtually all develop progressive, drug-refractory disease. Given the role of dysregulated expressions of cytoskeletal and cytoskeleton-regulatory proteins in tumor progression, we performed analyses of The Cancer Genome Atlas (TCGA) transcriptome data for different classes of actin-binding proteins to demonstrate that increased mRNA expression of profilin1 (Pfn1), Arp3, cofilin1, Ena/VASP, and CapZ, is an indicator of poor prognosis in ccRCC. Focusing further on Pfn1, we performed immunohistochemistry-based classification of Pfn1 staining in tissue microarrays, which indicated Pfn1 positivity in both tumor and stromal cells; however, the vast majority of ccRCC tumors tend to be Pfn1-positive selectively in stromal cells only. This finding is further supported by evidence for dramatic transcriptional up-regulation of Pfn1 in tumor-associated vascular endothelial cells in the clinical specimens of ccRCC. In vitro studies support the importance of Pfn1 in proliferation and migration of RCC cells and in soluble Pfn1's involvement in vascular endothelial cell tumor cell cross-talk. Furthermore, proof-of-concept studies demonstrate that treatment with a novel computationally designed Pfn1-actin interaction inhibitor identified herein reduces proliferation and migration of RCC cells in vitro and RCC tumor growth in vivo Based on these findings, we propose a potentiating role for Pfn1 in promoting tumor cell aggressiveness in the setting of ccRCC.


Asunto(s)
Carcinoma de Células Renales/patología , Neoplasias Renales/patología , Profilinas/metabolismo , Actinas/antagonistas & inhibidores , Actinas/metabolismo , Animales , Proteína CapZ/genética , Proteína CapZ/metabolismo , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Cofilina 1/genética , Cofilina 1/metabolismo , Bases de Datos Genéticas , Células Endoteliales/citología , Células Endoteliales/metabolismo , Humanos , Neoplasias Renales/metabolismo , Ratones , Ratones Endogámicos BALB C , Profilinas/antagonistas & inhibidores , Profilinas/genética , Pronóstico , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Microambiente Tumoral , Regulación hacia Arriba
7.
Exp Eye Res ; 213: 108861, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34822853

RESUMEN

Aberrant angiogenesis lies at the heart of a wide range of ocular pathologies such as proliferative diabetic retinopathy, wet age-related macular degeneration and retinopathy of prematurity. This study explores the anti-angiogenic activity of a novel small molecule investigative compound capable of inhibiting profilin1-actin interaction recently identified by our group. We demonstrate that our compound is capable of inhibiting migration, proliferation and angiogenic activity of microvascular endothelial cells in vitro as well as choroidal neovascularization (CNV) ex vivo. In mouse model of laser-injury induced CNV, intravitreal administration of this compound diminishes sub-retinal neovascularization. Finally, our preliminary structure-activity relationship study (SAR) demonstrates that this small molecule compound is amenable to improvement in biological activity through structural modifications.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Retiniana/tratamiento farmacológico , Actinas/antagonistas & inhibidores , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neovascularización Coroidal/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Humanos , Inyecciones Intravítreas , Ratones , Ratones Endogámicos C57BL , Profilinas/antagonistas & inhibidores , Neovascularización Retiniana/metabolismo , Vasos Retinianos/citología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Degeneración Macular Húmeda/tratamiento farmacológico , Degeneración Macular Húmeda/metabolismo
8.
J Biol Chem ; 294(17): 6972-6985, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30814249

RESUMEN

Dynamic regulation of the actin cytoskeleton is an essential feature of cell motility. Action of Enabled (Ena)/vasodilator-stimulated phosphoprotein (VASP), a family of conserved actin-elongating proteins, is an important aspect of regulation of the actin cytoskeletal architecture at the leading edge that controls membrane protrusion and cell motility. In this study, we performed mutagenesis experiments in overexpression and knockdown-rescue settings to provide, for the first time, direct evidence of the role of the actin-binding protein profilin1 (Pfn1) in VASP-mediated regulation of cell motility. We found that VASP's interaction with Pfn1 is promoted by cell-substrate adhesion and requires down-regulation of PKA activity. Our experimental data further suggest that PKA-mediated Ser137 phosphorylation of Pfn1 potentially negatively regulates the Pfn1-VASP interaction. Finally, Pfn1's ability to be phosphorylated on Ser137 was partly responsible for the anti-migratory action elicited by exposing cells to a cAMP/PKA agonist. On the basis of these findings, we propose a mechanism of adhesion-protrusion coupling in cell motility that involves dynamic regulation of Pfn1 by PKA activity.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Adhesión Celular , Movimiento Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Profilinas/metabolismo , Células HEK293 , Humanos , Fosforilación , Profilinas/química , Unión Proteica , Serina/metabolismo
9.
J Cell Sci ; 131(19)2018 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-30309957

RESUMEN

Actin-based cell migration is a fundamental cellular activity that plays a crucial role in a wide range of physiological and pathological processes. An essential feature of the remodeling of actin cytoskeleton during cell motility is the de novo synthesis of factors involved in the regulation of the actin cytoskeleton and cell adhesion in response to growth-factor signaling, and this aspect of cell migration is critically regulated by serum-response factor (SRF)-mediated gene transcription. Myocardin-related transcription factors (MRTFs) are key coactivators of SRF that link actin dynamics to SRF-mediated gene transcription. In this Review, we provide a comprehensive overview of the role of MRTF in both normal and cancer cell migration by discussing its canonical SRF-dependent as well as its recently emerged SRF-independent functions, exerted through its SAP domain, in the context of cell migration. We conclude by highlighting outstanding questions for future research in this field.


Asunto(s)
Movimiento Celular , Factor de Respuesta Sérica/metabolismo , Transactivadores/metabolismo , Animales , Humanos , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/patología , Dominios Proteicos , Transducción de Señal , Transactivadores/química
10.
J Biol Chem ; 293(7): 2606-2616, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29282288

RESUMEN

Profilin 1 (Pfn1) is an important regulator of the actin cytoskeleton and plays a vital role in many actin-based cellular processes. Therefore, identification of a small-molecule intervention strategy targeted against the Pfn1-actin interaction could have broad utility in cytoskeletal research and further our understanding of the role of Pfn1 in actin-mediated biological processes. Based on an already resolved Pfn1-actin complex crystal structure, we performed structure-based virtual screening of small-molecule libraries to seek inhibitors of the Pfn1-actin interaction. We identified compounds that match the pharmacophore of the key actin residues of Pfn1-actin interaction and therefore have the potential to act as competitive inhibitors of this interaction. Subsequent biochemical assays identified two candidate compounds with nearly identical structures that can mitigate the effect of Pfn1 on actin polymerization in vitro As a further proof-of-concept test for cellular effects of these compounds, we performed proximity ligation assays in endothelial cells (ECs) to demonstrate compound-induced inhibition of Pfn1-actin interaction. Consistent with the important role of Pfn1 in regulating actin polymerization and various fundamental actin-based cellular activities (migration and proliferation), treatment of these compounds reduced the overall level of cellular filamentous (F) actin, slowed EC migration and proliferation, and inhibited the angiogenic ability of ECs both in vitro and ex vivo In summary, this study provides the first proof of principle of small-molecule-mediated interference with the Pfn1-actin interaction. Our findings may have potential general utility for perturbing actin-mediated cellular activities and biological processes.


Asunto(s)
Actinas/metabolismo , Profilinas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/antagonistas & inhibidores , Actinas/genética , Animales , Aorta Torácica/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Células Endoteliales/citología , Células Endoteliales/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Polimerizacion/efectos de los fármacos , Profilinas/antagonistas & inhibidores , Profilinas/química , Profilinas/genética , Unión Proteica/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología
11.
J Biol Chem ; 292(28): 11777-11791, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28546428

RESUMEN

Megakaryoblastic leukemia (MKL)/serum-response factor (SRF)-mediated gene transcription is a highly conserved mechanism that connects dynamic reorganization of the actin cytoskeleton to regulation of expression of a wide range of genes, including SRF itself and many important structural and regulatory components of the actin cytoskeleton. In this study, we examined the possible role of MKL/SRF in the context of regulation of profilin (Pfn), a major controller of actin dynamics and actin cytoskeletal remodeling in cells. We demonstrated that despite being located on different genomic loci, two major isoforms of Pfn (Pfn1 and Pfn2) are co-regulated by a common mechanism involving the action of MKL that is independent of its SRF-related activity. We found that MKL co-regulates the expression of Pfn isoforms indirectly by modulating signal transducer and activator of transcription 1 (STAT1) and utilizing its SAP-domain function. Unexpectedly, our studies revealed that cellular externalization, rather than transcription of Pfn1, is affected by the perturbations of MKL. We further demonstrated that MKL can influence cell migration by modulating Pfn1 expression, indicating a functional connection between MKL and Pfn1 in actin-dependent cellular processes. Finally, we provide initial evidence supporting the ability of Pfn to influence MKL and SRF expression. Collectively, these findings suggest that Pfn may play a role in a possible feedback loop of the actin/MKL/SRF signaling circuit.


Asunto(s)
Regulación de la Expresión Génica , Profilinas/metabolismo , Factor de Transcripción STAT1/metabolismo , Transactivadores/metabolismo , Línea Celular Tumoral , Movimiento Celular , Células HEK293 , Humanos , Oligopéptidos/genética , Oligopéptidos/metabolismo , Profilinas/genética , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Interferencia de ARN , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Factor de Transcripción STAT1/antagonistas & inhibidores , Factor de Transcripción STAT1/genética , Factor de Respuesta Sérica/antagonistas & inhibidores , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Transactivadores/antagonistas & inhibidores , Transactivadores/genética
12.
Br J Cancer ; 119(9): 1106-1117, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30318519

RESUMEN

BACKGROUND: Adhesion-mediated activation of FAK/ERK signalling pathway, enabled by the formation of filopodial protrusions (FLP), has been shown to be an important event for triggering of dormancy-to-proliferation switch and metastatic outgrowth of breast cancer cells (BCC). We studied the role of actin-binding protein profilin1 (Pfn1) in these processes. METHODS: Quantitative immunohistochemistry (IHC) of BC tissue microarray (TMA) and survival analyses of curated transcriptome datasets of BC patients were performed to examine Pfn1's association with certain clinicopathological features. FLP formation and single cell outgrowth of BCC were assessed using a 3D matrigel culture that accurately predicts dormant vs metastatic outgrowth phenotypes of BCC in certain microenvironment. Gene expression studies were performed to identify potential biological pathways that are perturbed under Pfn1-depleted condition. RESULTS: Lower Pfn1 expression is correlated with lower nuclear grade of breast tumours and longer relapse-free survival of BC patients. Pfn1 depletion leads to defects in FLP and outgrowth of BCC but without impairing either FAK or ERK activation. Guided by transcriptome analyses, we further showed that Pfn1 depletion is associated with prominent SMAD3 upregulation. Although knockdown and overexpression experiments revealed that SMAD3 has an inhibitory effect on the outgrowth of breast cancer cells, SMAD3 knockdown alone was not sufficient to enhance the outgrowth potential of Pfn1-depleted BCC suggesting that other proliferation-regulatory pathways in conjunction with SMAD3 upregulation may underlie the outgrowth-deficient phenotype of BCC cells upon depletion of Pfn1. CONCLUSION: Overall, these data suggest that Pfn1 may be a novel biomarker for BC recurrence and a possible target to reduce metastatic outgrowth of BCC.


Asunto(s)
Neoplasias de la Mama/patología , Técnicas de Cultivo de Célula/métodos , Profilinas/deficiencia , Proteína smad3/genética , Regulación hacia Arriba , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Clasificación del Tumor , Pronóstico , Transducción de Señal , Análisis de Supervivencia , Análisis de Matrices Tisulares , Microambiente Tumoral
13.
Angiogenesis ; 20(4): 663-672, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28638990

RESUMEN

De novo synthesis of cytoskeleton-regulatory proteins triggered by the megakaryoblastic leukemia (MKL)/serum response factor (SRF) transcriptional system in response to pro-angiogenic growth factors lies at the heart of endothelial cell (EC) migration (a critical element of angiogenesis) and neovascularization. This study explores whether pharmacological intervention of MKL/SRF signaling axis by CCG-1423 is able to suppress angiogenesis. Our studies show that CCG-1423 inhibits migration and cord morphogenesis of EC in vitro and sprouting angiogenesis ex vivo and in vivo, suggesting CCG-1423 could be a novel anti-angiogenic agent. Kymography analyses of membrane dynamics of EC revealed that CCG-1423 treatment causes a major defect in membrane protrusion. CCG-1423 treatment led to attenuated expression of several actin-binding proteins that are important for driving membrane protrusion including ArpC2, VASP, and profilin1 (Pfn1) with the most drastic effect seen on the expression of Pfn1. Finally, depletion of Pfn1 alone is also sufficient for a dramatic decrease in sprouting angiogenesis of EC in vitro and ex vivo, further suggesting that Pfn1 depletion may be one of the mechanisms of the anti-angiogenic action of CCG-1423.


Asunto(s)
Anilidas/farmacología , Benzamidas/farmacología , Movimiento Celular/efectos de los fármacos , Células Endoteliales/citología , Células Endoteliales/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Factor de Respuesta Sérica/metabolismo , Transducción de Señal/efectos de los fármacos , Transactivadores/metabolismo , Actinas/metabolismo , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Línea Celular , Extensiones de la Superficie Celular/efectos de los fármacos , Extensiones de la Superficie Celular/metabolismo , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Células Endoteliales/efectos de los fármacos , Humanos , Ratones Noqueados , Profilinas/metabolismo , Pez Cebra/embriología
14.
Angew Chem Int Ed Engl ; 56(14): 3935-3939, 2017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28247559

RESUMEN

Isolation of a monomeric SiO2 compound 3 as a stable donor-acceptor complex with two different ligands -a σ-donating ligand (pyridine, dimethylaminopyridine, N-heterocyclic carbene) and a donor-acceptor ligand (iminophosphorane)-is presented. The SiO2 complex 3 is soluble in ordinary organic solvents and is stable at room temperature in solution and in the solid state. Of particular interest, 3 remains reactive and can be used as a stable and soluble unimolecular SiO2 reagent.

15.
Angew Chem Int Ed Engl ; 55(47): 14673-14677, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27763730

RESUMEN

A donor-stabilized 1,3-disila-2,4-diazacyclobutadiene presents an exceptionally short nonbonded Si⋅⋅⋅Si distance (2.23 Å), which is as short as that of Si=Si bonds (2.15-2.23 Å). Theoretical investigations indicate that there is no bond between the two silicon atoms, and that the unusual geometry can be related to a significant coulomb repulsion between the two ring nitrogen atoms. This chemical pressure phenomenon could provide an alternative and superior way of squeezing out van der Waals space in highly strained structures, as compared to the classical physical methods.

16.
Artículo en Inglés | MEDLINE | ID: mdl-38623956

RESUMEN

Actin cytoskeleton plays an important role in various aspects of atherosclerosis, a key driver of ischemic heart disease. Actin-binding protein Profilin1 (Pfn1) is overexpressed in atherosclerotic plaques in human disease, and Pfn1, when partially depleted globally in all cell types, confers atheroprotection in vivo. This study investigates the impact of endothelial cell (EC)-specific partial loss of Pfn1 expression in atherosclerosis development. We utilized mice engineered for conditional heterozygous knockout of the Pfn1 gene in ECs, with atherosclerosis induced by depletion of hepatic LDL receptor by gene delivery of PCSK9 combined with high-cholesterol diet. Our studies show that partial depletion of EC Pfn1 has certain beneficial effects marked by dampening of select pro-atherogenic cytokines (CXCL10 and IL7) with concomitant reduction in cytotoxic T cell abundance but is not sufficient to reduce hyperlipidemia and confer atheroprotection in vivo. In light of these findings, we conclude that atheroprotective phenotype conferred by global Pfn1 haplo-insufficiency requires contributions of additional cell types that are relevant for atherosclerosis progression.

17.
bioRxiv ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38106044

RESUMEN

Actin cytoskeleton plays an important role in various aspects of atherosclerosis, a key driver of ischemic heart disease. Actin-binding protein Profilin1 (Pfn1) is overexpressed in atherosclerotic plaques in human disease, and Pfn1, when partially depleted globally in all cell types, confers atheroprotection in vivo . This study investigates the impact of endothelial cell (EC)-specific partial loss of Pfn1 expression in atherosclerosis development. We utilized mice engineered for conditional heterozygous knockout of the Pfn1 gene in ECs, with atherosclerosis induced by depletion of hepatic LDL receptor by gene delivery of PCSK9 combined with high-cholesterol diet. Our studies show that partial depletion of EC Pfn1 has certain beneficial effects marked by dampening of select pro-atherogenic cytokines (CXCL10 and IL7) with concomitant reduction in cytotoxic T cell abundance but is not sufficient to reduce hyperlipidemia and confer atheroprotection in vivo . In light of these findings, we conclude that atheroprotective phenotype conferred by global Pfn1 haplo-insufficiency requires contributions of additional cell types that are relevant for atherosclerosis progression.

18.
bioRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38106226

RESUMEN

Bone is a frequent site for breast cancer metastasis. Conditioning of the local tumor microenvironment (TME) through crosstalk between tumor cells and bone resident cells in the metastatic niche is a major driving force for bone colonization of breast cancer cells. The vast majority of breast cancer-associated metastasis is osteolytic in nature, and RANKL-induced differentiation of bone marrow-derived macrophages to osteoclasts (OCLs) is a key requirement for osteolytic metastatic growth of cancer cells. In this study, we demonstrate that breast cancer cell-secreted factors stimulate RANKL-induced OCL differentiation of BMDMs requiring the function of Myocardin-related transcription factor (MRTF) in tumor cells. This is partly attributed to the critical role of MRTF in maintaining the basal cellular expression of connective tissue growth factor (CTGF), a pro-osteoclastogenic matricellular factor known to promote bone metastasis in human breast cancer. Supporting these in vitro findings, bioinformatics analyses of multiple human breast cancer transcriptome datasets reveal a strong positive correlation between CTGF expression and MRTF gene signature further establishing the relevance of our findings in a human disease context. By Luminex analyses, we show that MRTF depletion in breast cancer cells has a broad impact on OCL-regulatory cell-secreted factors that extends beyond CTGF. These findings, taken together with demonstration of MRTF-dependence for bone colonization breast cancer cells in vivo, suggest that MRTF inhibition could be an effective strategy to diminish OCL formation and skeletal involvement in breast cancer. In summary, this study highlights a novel tumor-extrinsic function of MRTF relevant to breast cancer metastasis.

19.
PNAS Nexus ; 2(10): pgad305, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37781098

RESUMEN

Actin-binding protein Profilin1 is an important regulator of actin cytoskeletal dynamics in cells and critical for embryonic development in higher eukaryotes. The objective of the present study was to examine the consequence of loss-of-function of Pfn1 in vascular endothelial cells (ECs) in vivo. We utilized a mouse model engineered for tamoxifen-inducible biallelic inactivation of the Pfn1 gene selectively in EC (Pfn1EC-KO). Widespread deletion of EC Pfn1 in adult mice leads to severe health complications presenting overt pathologies (endothelial cell death, infarct, and fibrosis) in major organ systems and evidence for inflammatory infiltrates, ultimately compromising the survival of animals within 3 weeks of gene ablation. Mice deficient in endothelial Pfn1 exhibit selective bias toward the proinflammatory myeloid-derived population of immune cells, a finding further supported by systemic elevation of proinflammatory cytokines. We further show that triggering Pfn1 depletion not only directly upregulates proinflammatory cytokine/chemokine gene expression in EC but also potentiates the paracrine effect of EC on proinflammatory gene expression in macrophages. Consistent with these findings, we provide further evidence for increased activation of Interferon Regulatory Factor 7 (IRF7) and STAT1 in EC when depleted of Pfn1. Collectively, these findings for the first time demonstrate a prominent immunological consequence of loss of endothelial Pfn1 and an indispensable role of endothelial Pfn1 in mammalian survival unlike tolerable phenotypes of Pfn1 loss in other differentiated cell types.

20.
bioRxiv ; 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38187641

RESUMEN

Dysregulated actin cytoskeleton gives rise to aberrant cell motility and metastatic spread of tumor cells. The MRTF-SRF transcriptional complex plays a key role in regulating the expressions of actin cytoskeleton-modulatory genes. In this study, we demonstrate that MRTF's interaction with SRF is critical for migration and invasion of breast cancer cells. Disruption of the MRTF-SRF interaction suppresses membrane dynamics affecting the frequency and the effectiveness of membrane protrusion during cell motility. Consistent with these phenotypic changes, we further show that MRTF promotes actin polymerization at the leading edge, a key aspect of membrane protrusion, and migration of breast cancer cells through upregulating the expression of formin-family actin nucleating/elongating protein encoding gene DIAPH3 in an SRF-dependent manner. In support of these findings, multiplexed quantitative immunohistochemistry and transcriptome analyses of clinical specimens of breast cancer further demonstrate a positive correlation between nuclear localization of MRTF with malignant traits of cancer cells as well as enrichment of MRTF/SRF gene signature in distant metastases relative to primary tumors. In conclusion, this study for the first time links the MRTF/SRF signaling axis to cell migration through the regulation of a specific actin-binding protein, and provides evidence for an association between MRTF/SRF activity and malignancy in human breast cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA