Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nucleic Acids Res ; 41(4): 2698-708, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23275545

RESUMEN

In the mammalian mitochondrial translation apparatus, the proteins and their partner RNAs are coded by two genomes. The proteins are nuclear-encoded and resemble their homologs, whereas the RNAs coming from the rapidly evolving mitochondrial genome have lost critical structural information. This raises the question of molecular adaptation of these proteins to their peculiar partner RNAs. The crystal structure of the homodimeric bacterial-type human mitochondrial aspartyl-tRNA synthetase (DRS) confirmed a 3D architecture close to that of Escherichia coli DRS. However, the mitochondrial enzyme distinguishes by an enlarged catalytic groove, a more electropositive surface potential and an alternate interaction network at the subunits interface. It also presented a thermal stability reduced by as much as 12°C. Isothermal titration calorimetry analyses revealed that the affinity of the mitochondrial enzyme for cognate and non-cognate tRNAs is one order of magnitude higher, but with different enthalpy and entropy contributions. They further indicated that both enzymes bind an adenylate analog by a cooperative allosteric mechanism with different thermodynamic contributions. The larger flexibility of the mitochondrial synthetase with respect to the bacterial enzyme, in combination with a preserved architecture, may represent an evolutionary process, allowing nuclear-encoded proteins to cooperate with degenerated organelle RNAs.


Asunto(s)
Aspartato-ARNt Ligasa/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Mitocondrias/enzimología , Termodinámica , Aspartato-ARNt Ligasa/metabolismo , Estabilidad de Enzimas , Proteínas de Escherichia coli/metabolismo , Humanos , Modelos Moleculares , ARN de Transferencia/metabolismo
2.
Biochem J ; 450(2): 345-50, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23216004

RESUMEN

The autosomal recessive white matter disorder LBSL (leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation) is caused by mutations in DARS2, coding for mtAspRS (mitochondrial aspartyl-tRNA synthetase). Generally, patients are compound heterozygous for mutations in DARS2. Many different mutations have been identified in patients, including several missense mutations. In the present study, we have examined the effects of missense mutations found in LBSL patients on the expression, enzyme activity, localization and dimerization of mtAspRS, which is important for understanding the cellular defect underlying the pathogenesis of the disease. Nine different missense mutations were analysed and were shown to have various effects on mtAspRS properties. Several mutations have a direct effect on the catalytic activity of the enzyme; others have an effect on protein expression or dimerization. Most mutations have a clear impact on at least one of the properties of mtAspRS studied, probably resulting in a small contribution of the missense variants to the mitochondrial aspartylation activity in the cell.


Asunto(s)
Aspartato-ARNt Ligasa/genética , Aspartato-ARNt Ligasa/metabolismo , Leucoencefalopatías/genética , Leucoencefalopatías/metabolismo , Mitocondrias/enzimología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Mutación Missense , Aspartato-ARNt Ligasa/deficiencia , Tronco Encefálico/metabolismo , Tronco Encefálico/patología , Células HEK293 , Humanos , Inmunohistoquímica , Leucoencefalopatías/patología , Mitocondrias/metabolismo , Enfermedades Mitocondriales/patología , Médula Espinal/metabolismo , Médula Espinal/patología , Transfección
3.
RNA ; 15(8): 1462-8, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19535463

RESUMEN

More than 130 mutations in human mitochondrial tRNA (mt-tRNA) genes have been correlated with a variety of neurodegenerative and neuromuscular disorders. Their molecular impacts are of mosaic type, affecting various stages of tRNA biogenesis, structure, and/or functions in mt-translation. Knowledge of mammalian mt-tRNA structures per se remains scarce however. Primary and secondary structures deviate from classical tRNAs, while rules for three-dimensional (3D) folding are almost unknown. Here, we take advantage of a myopathy-related mutation A7526G (A9G) in mt-tRNA(Asp) to investigate both the primary molecular impact underlying the pathology and the role of nucleotide 9 in the network of 3D tertiary interactions. Experimental evidence is presented for existence of a 9-12-23 triple in human mt-tRNA(Asp) with a strongly conserved interaction scheme in mammalian mt-tRNAs. Mutation A7526G disrupts the triple interaction and in turn reduces aspartylation efficiency.


Asunto(s)
ARN de Transferencia de Aspártico/química , ARN de Transferencia de Aspártico/genética , ARN/química , ARN/genética , Sitios de Unión/genética , Humanos , Cinética , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/metabolismo , Miopatías Mitocondriales/patología , Modelos Moleculares , Mutación Missense , Conformación de Ácido Nucleico , ARN/metabolismo , ARN Mitocondrial , ARN de Transferencia de Aspártico/metabolismo , Aminoacilación de ARN de Transferencia/genética
4.
Sci Rep ; 5: 17332, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26620921

RESUMEN

Mutations in human mitochondrial aminoacyl-tRNA synthetases are associated with a variety of neurodegenerative disorders. The effects of these mutations on the structure and function of the enzymes remain to be established. Here, we investigate six mutants of the aspartyl-tRNA synthetase correlated with leukoencephalopathies. Our integrated strategy, combining an ensemble of biochemical and biophysical approaches, reveals that mutants are diversely affected with respect to their solubility in cellular extracts and stability in solution, but not in architecture. Mutations with mild effects on solubility occur in patients as allelic combinations whereas those with strong effects on solubility or on aminoacylation are necessarily associated with a partially functional allele. The fact that all mutations show individual molecular and cellular signatures and affect amino acids only conserved in mammals, points towards an alternative function besides aminoacylation.


Asunto(s)
Aspartato-ARNt Ligasa/metabolismo , Leucoencefalopatías/enzimología , Proteínas Mitocondriales/metabolismo , Mutación , Animales , Aspartato-ARNt Ligasa/genética , Línea Celular , Cricetinae , Estabilidad de Enzimas/genética , Humanos , Leucoencefalopatías/genética , Leucoencefalopatías/patología , Proteínas Mitocondriales/genética
5.
Biochimie ; 100: 18-26, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24120687

RESUMEN

Mammalian mitochondrial aminoacyl-tRNA synthetases are nuclear-encoded enzymes that are essential for mitochondrial protein synthesis. Due to an endosymbiotic origin of the mitochondria, many of them share structural domains with homologous bacterial enzymes of same specificity. This is also the case for human mitochondrial aspartyl-tRNA synthetase (AspRS) that shares the so-called bacterial insertion domain with bacterial homologs. The function of this domain in the mitochondrial proteins is unclear. Here, we show by bioinformatic analyses that the sequences coding for the bacterial insertion domain are less conserved in opisthokont and protist than in bacteria and viridiplantae. The divergence suggests a loss of evolutionary pressure on this domain for non-plant mitochondrial AspRSs. This discovery is further connected with the herein described occurrence of alternatively spliced transcripts of the mRNAs coding for some mammalian mitochondrial AspRSs. Interestingly, the spliced transcripts alternately lack one of the four exons that code for the bacterial insertion domain. Although we showed that the human alternative transcript is present in all tested tissues; co-exists with the full-length form, possesses 5'- and 3'-UTRs, a poly-A tail and is bound to polysomes, we were unable to detect the corresponding protein. The relaxed selective pressure combined with the occurrence of alternative splicing, involving a single structural sub-domain, favors the hypothesis of the loss of function of this domain for AspRSs of mitochondrial location. This evolutionary divergence is in line with other characteristics, established for the human mt-AspRS, that indicate a functional relaxation of non-viridiplantae mt-AspRSs when compared to bacterial and plant ones, despite their common ancestry.


Asunto(s)
Aspartato-ARNt Ligasa/química , Mitocondrias/genética , Proteínas Mitocondriales/química , Biosíntesis de Proteínas , ARN Mensajero/química , Empalme Alternativo , Alveolados/enzimología , Alveolados/genética , Secuencia de Aminoácidos , Amebozoos/enzimología , Amebozoos/genética , Animales , Archaea/enzimología , Archaea/genética , Aspartato-ARNt Ligasa/genética , Aspartato-ARNt Ligasa/metabolismo , Secuencia de Bases , Evolución Molecular , Hongos/enzimología , Hongos/genética , Expresión Génica , Humanos , Mitocondrias/enzimología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Insercional , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Selección Genética , Alineación de Secuencia , Viridiplantae/enzimología , Viridiplantae/genética
6.
Biochimie ; 94(5): 1090-7, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22402012

RESUMEN

Many mammalian mitochondrial aminoacyl-tRNA synthetases are of bacterial-type and share structural domains with homologous bacterial enzymes of the same specificity. Despite this high similarity, synthetases from bacteria are known for their inability to aminoacylate mitochondrial tRNAs, while mitochondrial enzymes do aminoacylate bacterial tRNAs. Here, the reasons for non-aminoacylation by a bacterial enzyme of a mitochondrial tRNA have been explored. A mutagenic analysis performed on in vitro transcribed human mitochondrial tRNA(Asp) variants tested for their ability to become aspartylated by Escherichia coli aspartyl-tRNA synthetase, reveals that full conversion cannot be achieved on the basis of the currently established tRNA/synthetase recognition rules. Integration of the full set of aspartylation identity elements and stabilization of the structural tRNA scaffold by restoration of D- and T-loop interactions, enable only a partial gain in aspartylation efficiency. The sequence context and high structural instability of the mitochondrial tRNA are additional features hindering optimal adaptation of the tRNA to the bacterial enzyme. Our data support the hypothesis that non-aminoacylation of mitochondrial tRNAs by bacterial synthetases is linked to the large sequence and structural relaxation of the organelle encoded tRNAs, itself a consequence of the high rate of mitochondrial genome divergence.


Asunto(s)
Aspartato-ARNt Ligasa/metabolismo , Mitocondrias/metabolismo , Aminoacilación/genética , Aminoacilación/fisiología , Aspartato-ARNt Ligasa/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Conformación de Ácido Nucleico , Estabilidad del ARN , ARN de Transferencia de Aspártico/genética , ARN de Transferencia de Aspártico/metabolismo
7.
Protein Eng Des Sel ; 25(9): 473-81, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22871419

RESUMEN

Mitochondrial aminoacyl-tRNA synthetases are key enzymes in translation. They are encoded by the nuclear genome, synthesized as precursors in the cytosol and imported. Most are matured by cleavage of their N-terminal targeting sequence. The poor expression of mature proteins in prokaryotic systems, along with their low solubility and stability after purification are major obstacles for biophysical and crystallographic studies. The purpose of the present work was to analyze the influence of additives on a slightly soluble aspartyl-tRNA synthetase and of the N-terminal sequence of the protein on its expression and solubility. On the one hand, the solubility of the enzyme was augmented to some extent in the presence of a chemical analog of the intermediary product aspartyl-adenylate, 5'-O-[N-(L aspartyl) sulfamoyl] adenosine. On the other hand, expression was enhanced by extending the N-terminus by seven natural amino acids from the predicted targeting sequence. The re-designed enzyme was active, monodisperse, more soluble and yielded crystals that are suitable for structure determination. This result underlines the importance of the N-terminal residue sequence for solubility. It suggests that additional criteria should be taken into account for the prediction of cleavage sites in mitochondrial targeting sequences.


Asunto(s)
Aspartato-ARNt Ligasa/química , Aspartato-ARNt Ligasa/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Ingeniería de Proteínas/métodos , Secuencia de Aminoácidos , Aspartato-ARNt Ligasa/aislamiento & purificación , Aspartato-ARNt Ligasa/metabolismo , Cristalización , Cristalografía por Rayos X , Escherichia coli/genética , Expresión Génica , Humanos , Proteínas Mitocondriales/aislamiento & purificación , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA