Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(28): 16302-16312, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32586954

RESUMEN

DNA mismatch repair (MMR) corrects errors that occur during DNA replication. In humans, mutations in the proteins MutSα and MutLα that initiate MMR cause Lynch syndrome, the most common hereditary cancer. MutSα surveilles the DNA, and upon recognition of a replication error it undergoes adenosine triphosphate-dependent conformational changes and recruits MutLα. Subsequently, proliferating cell nuclear antigen (PCNA) activates MutLα to nick the error-containing strand to allow excision and resynthesis. The structure-function properties of these obligate MutSα-MutLα complexes remain mostly unexplored in higher eukaryotes, and models are predominately based on studies of prokaryotic proteins. Here, we utilize atomic force microscopy (AFM) coupled with other methods to reveal time- and concentration-dependent stoichiometries and conformations of assembling human MutSα-MutLα-DNA complexes. We find that they assemble into multimeric complexes comprising three to eight proteins around a mismatch on DNA. On the timescale of a few minutes, these complexes rearrange, folding and compacting the DNA. These observations contrast with dominant models of MMR initiation that envision diffusive MutS-MutL complexes that move away from the mismatch. Our results suggest MutSα localizes MutLα near the mismatch and promotes DNA configurations that could enhance MMR efficiency by facilitating MutLα nicking the DNA at multiple sites around the mismatch. In addition, such complexes may also protect the mismatch region from nucleosome reassembly until repair occurs, and they could potentially remodel adjacent nucleosomes.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteínas MutL/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Adenosina Trifosfato/metabolismo , ADN/química , ADN/genética , Proteínas de Unión al ADN/química , Humanos , Complejos Multiproteicos/metabolismo , Proteínas MutL/química , Proteína 2 Homóloga a MutS/química , Conformación de Ácido Nucleico , Nucleosomas/metabolismo , Pliegue de Proteína , Multimerización de Proteína
2.
Nucleic Acids Res ; 46(20): 10782-10795, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30272207

RESUMEN

MutS homologs identify base-pairing errors made in DNA during replication and initiate their repair. In the presence of adenosine triphosphate, MutS induces DNA bending upon mismatch recognition and subsequently undergoes conformational transitions that promote its interaction with MutL to signal repair. In the absence of MutL, these transitions lead to formation of a MutS mobile clamp that can move along the DNA. Previous single-molecule FRET (smFRET) studies characterized the dynamics of MutS DNA-binding domains during these transitions. Here, we use protein-DNA and DNA-DNA smFRET to monitor DNA conformational changes, and we use kinetic analyses to correlate DNA and protein conformational changes to one another and to the steps on the pathway to mobile clamp formation. The results reveal multiple sequential structural changes in both MutS and DNA, and they suggest that DNA dynamics play a critical role in the formation of the MutS mobile clamp. Taking these findings together with data from our previous studies, we propose a unified model of coordinated MutS and DNA conformational changes wherein initiation of mismatch repair is governed by a balance of DNA bending/unbending energetics and MutS conformational changes coupled to its nucleotide binding properties.


Asunto(s)
Disparidad de Par Base/genética , Reparación de la Incompatibilidad de ADN , ADN/química , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Conformación de Ácido Nucleico , Emparejamiento Base/fisiología , Reparación de la Incompatibilidad de ADN/genética , Escherichia coli , Transferencia Resonante de Energía de Fluorescencia , Inestabilidad Genómica/genética , Modelos Moleculares , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/química , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Unión Proteica/fisiología , Conformación Proteica , Dominios Proteicos/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
3.
Biochemistry ; 57(2): 241-254, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29303250

RESUMEN

Lipoprotein lipase (LPL) is a dimeric enzyme that is responsible for clearing triglyceride-rich lipoproteins from the blood. Although LPL plays a key role in cardiovascular health, an experimentally derived three-dimensional structure has not been determined. Such a structure would aid in understanding mutations in LPL that cause familial LPL deficiency in patients and help in the development of therapeutic strategies to target LPL. A major obstacle to structural studies of LPL is that LPL is an unstable protein that is difficult to produce in the quantities needed for nuclear magnetic resonance or crystallography. We present updated LPL structural models generated by combining disulfide mapping, computational modeling, and data derived from single-molecule Förster resonance energy transfer (smFRET). We pioneer the technique of smFRET for use with LPL by developing conditions for imaging active LPL and identifying positions in LPL for the attachment of fluorophores. Using this approach, we measure LPL-LPL intermolecular interactions to generate experimental constraints that inform new computational models of the LPL dimer structure. These models suggest that LPL may dimerize using an interface that is different from the dimerization interface suggested by crystal packing contacts seen in structures of pancreatic lipase.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Imagen Individual de Molécula/métodos , Biotinilación , Biología Computacional , Cisteína/química , Dimerización , Células HEK293 , Humanos , Lipoproteína Lipasa/química , Lipoproteína Lipasa/genética , Lipoproteínas/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Conformación Proteica , Proteínas Recombinantes/química , Triglicéridos/metabolismo
4.
Biophys J ; 104(11): 2437-47, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23746516

RESUMEN

Isothermal titration calorimetry was used to characterize the binding of calcium ion (Ca²âº) and phospholipid to the peripheral membrane-binding protein annexin a5. The phospholipid was a binary mixture of a neutral and an acidic phospholipid, specifically phosphatidylcholine and phosphatidylserine in the form of large unilamellar vesicles. To stringently define the mode of binding, a global fit of data collected in the presence and absence of membrane concentrations exceeding protein saturation was performed. A partition function defined the contribution of all heat-evolving or heat-absorbing binding states. We find that annexin a5 binds Ca²âº in solution according to a simple independent-site model (solution-state affinity). In the presence of phosphatidylserine-containing liposomes, binding of Ca²âº differentiates into two classes of sites, both of which have higher affinity compared with the solution-state affinity. As in the solution-state scenario, the sites within each class were described with an independent-site model. Transitioning from a solution state with lower Ca²âº affinity to a membrane-associated, higher Ca²âº affinity state, results in cooperative binding. We discuss how weak membrane association of annexin a5 prior to Ca²âº influx is the basis for the cooperative response of annexin a5 toward Ca²âº, and the role of membrane organization in this response.


Asunto(s)
Anexina A5/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Modelos Biológicos , Membrana Celular/química , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Unión Proteica
5.
Biophys J ; 103(2): 238-46, 2012 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-22853901

RESUMEN

The C2A domain is one of two calcium ion (Ca(2+))- and membrane-binding domains within synaptotagmin I (Syt I), the identified Ca(2+) sensor for regulated exocytosis of neurotransmitter. We propose that the mechanistic basis for C2A's response to Ca(2+) and cellular function stems from marginal stability and ligand-induced redistributions of protein conformers. To test this hypothesis, we used a combination of calorimetric and fluorescence techniques. We measured free energies of stability by globally fitting differential scanning calorimetry and fluorescence lifetime spectroscopy denaturation data, and found that C2A is weakly stable. Additionally, using partition functions in a fluorescence resonance energy transfer approach, we found that the Ca(2+)- and membrane-binding sites of C2A exhibit weak cooperative linkage. Lastly, a dye-release assay revealed that the Ca(2+)- and membrane-bound conformer subset of C2A promote membrane disruption. We discuss how these phenomena may lead to both cooperative and functional responses of Syt I.


Asunto(s)
Calcio/metabolismo , Sinaptotagmina I/química , Sinaptotagmina I/metabolismo , Bioensayo , Fluoresceínas/metabolismo , Fluorescencia , Humanos , Iones , Unión Proteica , Desnaturalización Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Termodinámica
6.
Nat Commun ; 6: 8065, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26304740

RESUMEN

Transcription errors occur in all living cells; however, it is unknown how these errors affect cellular health. To answer this question, we monitor yeast cells that are genetically engineered to display error-prone transcription. We discover that these cells suffer from a profound loss in proteostasis, which sensitizes them to the expression of genes that are associated with protein-folding diseases in humans; thus, transcription errors represent a new molecular mechanism by which cells can acquire disease phenotypes. We further find that the error rate of transcription increases as cells age, suggesting that transcription errors affect proteostasis particularly in aging cells. Accordingly, transcription errors accelerate the aggregation of a peptide that is implicated in Alzheimer's disease, and shorten the lifespan of cells. These experiments reveal a previously unappreciated role for transcriptional fidelity in cellular health and aging.


Asunto(s)
Senescencia Celular/genética , Chaperonas Moleculares/metabolismo , Agregación Patológica de Proteínas/metabolismo , Estrés Fisiológico , Transcripción Genética , Línea Celular , Supervivencia Celular/genética , Proteínas de Choque Térmico/metabolismo , Mutación , ARN Polimerasa II/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
PLoS One ; 7(10): e46748, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23071627

RESUMEN

Synaptotagmin I (Syt I) is a vesicle-localized protein implicated in sensing the calcium influx that triggers fast synchronous release of neurotransmitter. How Syt I utilizes its two C2 domains to integrate signals and mediate neurotransmission has continued to be a controversial area of research, though prevalent hypotheses favor independent function. Using differential scanning calorimetry and fluorescence lifetime spectroscopy in a thermodynamic denaturation approach, we tested an alternative hypothesis in which both domains interact to cooperatively disseminate binding information. The free energy of stability was determined for C2A, C2B, and C2AB constructs by globally fitting both methods to a two-state model of unfolding. By comparing the additive free energies of C2A and C2B with C2AB, we identified a negative coupling interaction between the C2 domains of Syt I. This interaction not only provides a mechanistic means for propagating signals, but also a possible means for coordinating the molecular events of neurotransmission.


Asunto(s)
Sinaptotagmina I/química , Rastreo Diferencial de Calorimetría , Humanos , Modelos Moleculares , Desnaturalización Proteica , Estabilidad Proteica , Estructura Terciaria de Proteína , Termodinámica
8.
Zebrafish ; 8(4): 191-202, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22181662

RESUMEN

As part of an upper level undergraduate developmental biology course at the University of Minnesota Duluth, we developed a unit in which students carried out original research as part of a cooperative class project. Students had the opportunity to gain experience in the scientific method from experimental design all of the way through to the preparation of publication on their research that included text, figures, and tables. This kind of inquiry-based learning has been shown to have many benefits for students, including increased long-term learning and a better understanding of the process of scientific discovery. In our project, students designed experiments to explore why zebrafish typically spawn in the first few hours after the lights come on in the morning. The results of our experiments suggest that spawning still occurs when the dark-to-light transition is altered or absent. This is consistent with the work of others that demonstrates that rhythmic spawning behavior is regulated by an endogenous circadian clock. Our successes and failures carrying out original research as part of an undergraduate course should contribute to the growing approaches for using zebrafish to bring the excitement of experimental science to the classroom.


Asunto(s)
Relojes Circadianos , Conducta Consumatoria/fisiología , Biología Evolutiva/educación , Oviposición/fisiología , Pez Cebra/fisiología , Animales , Curriculum , Femenino , Masculino , Fotoperiodo , Proyectos de Investigación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA