Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Environ Manage ; 321: 115868, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35985258

RESUMEN

The effect of six important factors on the anaerobic biodegradation of linear alkylbenzene sulphonate (LAS) was evaluated using a response surface methodology. The factors were: (i) co-substrate concentration (CC), (ii) contact time between LAS and microorganisms, (iii) temperature, (iv) hardness, (v) pH, and (vi) LAS source. The results showed that individually or combined, CC with chemical oxygen demand (COD) ≤50 mg L-1 was the factor that mostly favoured LAS biodegradation; whereas at COD >50 mg L-1, adsorption to sludge and solubilisation in the aqueous medium were favoured. Two-factor interactions promoted the highest percentages of biodegradation (45-52%), adsorption (43-45%), and solubilisation (18-25%). The three-factor interactions resulted in small percentage increases of up to 11%, 5%, and 13% for biodegradation, adsorption, and solubilisation, respectively, compared to those of two-factor interactions. The interactions of four, five, and six factors resulted in a non-significant effect on LAS biodegradation, adsorption, and solubilisation, with percentages close to those quantified for the two- and three-factor interactions. Concentrations of up to 30 mg LAS L-1 did not significantly affect the COD removal efficiency (74-88%) from the medium. These values are commonly obtained in full-scale anaerobic systems used to treat domestic sewage.


Asunto(s)
Ácidos Alcanesulfónicos , Reactores Biológicos , Ácidos Alcanesulfónicos/metabolismo , Anaerobiosis , Biodegradación Ambiental , Aguas del Alcantarillado/química , Tensoactivos/metabolismo
2.
Water Sci Technol ; 85(10): 2882-2898, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35638794

RESUMEN

Real textile wastewater containing high salinity (up to 12.6 g·kg-1) and surfactant (up to 5.9 mg·L-1 of linear alkylbenzene sulfonate - LAS) was submitted to biological treatment for colour (up to 652 mg Pt-Co·L-1) and sulphate (up to 1,568.6 mg SO4-2·L-1) removal. The influence of ethanol and molasses supplementation was firstly evaluated in anaerobic batch reactors for the removal of dyes and sulphate. Subsequently, aiming to remove aromatic amines (dye degradation by-products), an anaerobic-aerobic continuous system supplemented with molasses was applied. Supplementation had no influence on colour removal (maximum efficiencies around 70%), while it improved sulphate reduction (23% without supplementation against 87% with supplementation), and conferred robustness to the reactors, which recovered quickly after higher salinity impact. The aerobic reactor removed aromatic amines when the level of surfactants was lower than 1.0 mg LAS·L-1, but the performance of the system was hindered when the concentration was increased to 5.9 mg LAS·L-1. Findings suggest that the supplementation of an easily biodegradable organic matter might be a strategy to overcome wastewater fluctuation in composition.


Asunto(s)
Sulfatos , Aguas Residuales , Aminas , Anaerobiosis , Reactores Biológicos , Colorantes/metabolismo , Salinidad , Óxidos de Azufre , Tensoactivos , Textiles
3.
Environ Sci Technol ; 55(9): 5806-5814, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33835790

RESUMEN

The nitroheterocyclic 3-nitro-1,2,4-triazol-5-one (NTO) is an ingredient of insensitive explosives increasingly used by the military, becoming an emergent environmental pollutant. Cometabolic biotransformation of NTO occurs in mixed microbial cultures in soils and sludges with excess electron-donating substrates. Herein, we present the unusual energy-yielding metabolic process of NTO respiration, in which the NTO reduction to 3-amino-1,2,4-triazol-5-one (ATO) is linked to the anoxic acetate oxidation to CO2 by a culture enriched from municipal anaerobic digester sludge. Cell growth was observed simultaneously with NTO reduction, whereas the culture was unable to grow in the presence of acetate only. Extremely low concentrations (0.06 mg L-1) of the uncoupler carbonyl cyanide m-chlorophenyl hydrazone inhibited NTO reduction, indicating that the process was linked to respiration. The ultimate evidence of NTO respiration was adenosine triphosphate production due to simultaneous exposure to NTO and acetate. Metagenome sequencing revealed that the main microorganisms (and relative abundances) were Geobacter anodireducens (89.3%) and Thauera sp. (5.5%). This study is the first description of a nitroheterocyclic compound being reduced by anaerobic respiration, shedding light on creative microbial processes that enable bacteria to make a living reducing NTO.


Asunto(s)
Bacterias , Nitrocompuestos , Bacterias/genética , Geobacter , Respiración , Triazoles
4.
Water Sci Technol ; 83(11): 2691-2699, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34115623

RESUMEN

2,4-Dinitroanisole (DNAN) is a toxic compound increasingly used by the military that can be released into the environment on the soil of training fields and in the wastewater of manufacturing plants. DNAN's nitro groups are anaerobically reduced to amino groups by microorganisms when electron donors are available. Using anaerobic sludge as the inoculum, we tested different electron donors for DNAN bioreduction at 20 and 30 °C: acetate, ethanol, pyruvate, hydrogen, and hydrogen + pyruvate. Biotic controls without external electron donors and abiotic controls with heat-killed sludge were also assayed. No DNAN conversion was observed in the abiotic controls. In all biotic treatments, DNAN was reduced to 2-methoxy-5-nitroaniline (MENA), which was further reduced to 2,4-diaminoanisole (DAAN). Ethanol or acetate did not increase DNAN reduction rate compared to the endogenous control. The electron donors that caused the fastest DNAN reductions were (rates at 30 °C): H2 and pyruvate combined (311.28 ± 10.02 µM·d-1·gSSV-1), followed by H2 only (207.19 ± 5.95 µM·d-1·gSSV-1), and pyruvate only (36.35 ± 2.95 µM·d-1·gSSV-1). Raising the temperature to 30 °C improved DNAN reduction rates when pyruvate, H2, or H2 + pyruvate were used as electrons donors. Our results can be applied to optimize the anaerobic treatment of DNAN-containing wastewater.


Asunto(s)
Sustancias Explosivas , Aguas del Alcantarillado , Anaerobiosis , Anisoles , Biotransformación , Electrones , Temperatura
5.
J Water Health ; 16(3): 391-402, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29952328

RESUMEN

We evaluate the behavior of a device designed to automatically divert and store the first flush of harvested rainwater in cisterns. The first phase (PI) was conducted with artificial precipitation in an experimental installation seeking to identify how many millimeters of rainwater should be diverted to preserve the rainwater quality. In the second phase (PII), we designed a PVC-pipe device to store the first millimeter of rainwater, and tested it in field (a rural area in Brazil) during two real rainfall events. In the third phase (PIII), the device and a hand pump were assayed for two years using eight cisterns in a rural area where people drink the rainwater. PI results indicated that the most significant pollution of the rainwater is flushed with the first millimeter of rain, and diversion promoted the removal of 98% and 100% of the total coliforms and Escherichia coli, respectively. The bacteriological behavior was maintained in the subsequent phases. The device was able to preserve the quality of the rainwater most of the time, satisfying drinking requirements for the parameters of turbidity and color. The satisfactory performance of the device was confirmed in the field, behaving as a sanitary barrier for rainwater quality protection.


Asunto(s)
Agua Potable , Lluvia , Microbiología del Agua , Purificación del Agua/instrumentación , Abastecimiento de Agua , Bacterias , Brasil , Clima , Humanos , Purificación del Agua/métodos , Calidad del Agua
6.
Biodegradation ; 29(1): 41-58, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29128887

RESUMEN

Manipueira is a carbohydrate-rich agro-industrial waste from cassava processing. It is considered well suitable for biotechnological processes, such as hydrogen and carboxylic acids production, due to the high content of easily degradable organic matter. However, the proper methanogenesis inhibition method, inoculum type, and organic loads are factors still limiting the processes. The objective in this work was to evaluate the effects of such factors on byproducts production in anaerobic reactors. Batch experiments were conducted with 2.3-L flasks during two operational phases. In the first phase (P1), inhibition of methanogens in the sludge was evaluated using acetylene (1% v/v of headspace) and heat treatment (120 °C, 1 atm for 30 min). In the second phase (P2), three inoculum types obtained from common anaerobic sludges (bovine rumen and sludges from municipal and textile industrial wastewater treatment plants) were individually assayed. P2 aimed to identify the best inoculum, based on hydrogen production ability, which was tested for three initial concentrations of manipueira in terms of chemical oxygen demand (COD) (10, 20 and 40 g O2/L). Results of P1 indicated that either acetylene or heat treatment efficiently inhibited methanogenesis, with no methane production. However, the maximum H2 production potential by applying heat treatment (~ 563 mL) was more than twice compared with that by acetylene treatment (~ 257 mL); and butyrate was the main carboxylic acid by-product (~ 3 g/L). In P2 experiments after sludge heat treatment, the highest hydrogen yield (1.66 ± 0.07 mol H2/mol glucose) and caproic acid production (~ 2 g/L) were observed at 20 g O2/L of manipueira COD, when bovine rumen was the inoculum. The primary metabolic degradation products in all P2 experiments were ethanol, acetic, butyric, propionic and caproic acids. The finding of caproic acid detection indicated that the applied conditions in manipueira anaerobic degradation favored carbon chain elongation over methanogenesis.


Asunto(s)
Ácidos Carboxílicos/análisis , Hidrógeno/análisis , Manihot/química , Metano/biosíntesis , Aguas Residuales , Anaerobiosis , Animales , Biodegradación Ambiental , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Bovinos , Residuos Industriales/análisis , Cinética , Metaboloma , Aguas del Alcantarillado/microbiología
7.
Water Sci Technol ; 75(3-4): 963-970, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28234296

RESUMEN

The aim of this study has been to produce 1,3-propanediol (1,3-PDO) from glycerol (gly) fermentation by means of a microbial mixed culture (granular sludge), as well as to establish the operational conditions of two up-flow anaerobic sludge blanket (UASB) reactors in order to achieve a maximum 1,3-PDO yield. The UASB reactors with initial pH values set at 6.8 and 5.5 were operated at 30 °C during 165 days. Thirteen variables were previously screened by a Plackett-Burman (PB) design; results showed that yeast extract, MgSO4 and methanogenesis inhibition (by heat shock) showed a positive effect, whereas high glycerol concentration, tryptone and CaCl2 showed a negative impact on the 1,3-PDO produced by glycerol degradation. Following four experimental periods, the highest average yield of 0.43 mol 1,3-PDO mol-1 gly was achieved when sodium bicarbonate was added to the reactors. Propionate and acetate were also produced and a high microorganism diversity was detected; however, the restrictive operational conditions of the reactors led to the death of the methanogenic archaea. Nevertheless, the continuous production of 1,3-PDO from glycerol within UASB reactors inoculated with granular sludge can be considered highly feasible.


Asunto(s)
Reactores Biológicos/microbiología , Glicerol/metabolismo , Glicoles de Propileno/análisis , Aguas del Alcantarillado/química , Aguas del Alcantarillado/microbiología , Anaerobiosis , Euryarchaeota/metabolismo , Fermentación , Propiedades de Superficie
8.
Environ Monit Assess ; 189(11): 561, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29034409

RESUMEN

The decision-making process involved in municipal solid waste management (MSWM) must consider more than just financial aspects, which makes it a difficult task in developing countries. The Recife Metropolitan Region (RMR) in the Northeast of Brazil faces a MSWM problem that has been ongoing since the 1970s, with no common solution. In order to direct short-term solutions, three MSWM alternatives were outlined for the RMR, considering the current and future situations, the time and cost involved and social/environmental criteria. A multi-criteria approach, based on the Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE), was proposed to rank these alternatives. The alternative that included two private landfill sites and seven transfer, sorting and composting stations was confirmed as the most suitable and stable option for short-term MSWM, considering the two scenarios for the criteria weights. Sensitivity analysis was also performed to support the robustness of the results. The implementation of separate collections would minimize the amount of waste buried, while maximizing the useful life of landfill sites and increasing the timeframe of the alternative. Overall, the multi-criteria analysis was helpful and accurate during the alternative selection process, considering the similarities and restrictions of each option, which can lead to difficulties during the decision-making process.


Asunto(s)
Residuos Sólidos/análisis , Administración de Residuos/métodos , Brasil , Compostaje , Toma de Decisiones , Países en Desarrollo , Ambiente , Monitoreo del Ambiente , Eliminación de Residuos/métodos , Residuos Sólidos/estadística & datos numéricos
9.
Artículo en Inglés | MEDLINE | ID: mdl-27088975

RESUMEN

The effect of the initial concentration of linear alkylbenzene sulfonate (LAS) on specific methanogenic activity (SMA) was investigated in this work. Six anaerobic flasks reactors with 1 L of total volume were inoculated with anaerobic sludge (2 g VSS L(-1)). The reactors were assayed for 42 days, and fed with volatile fatty acids, nutrients, and LAS. The initial LAS concentrations were 0, 10, 30, 50, 75, and 100 mg L(-1) for the treatment flasks T1 (control), T2, T3, T4, T5, and T6, respectively. When compared with T1, T2 exhibited a 30% reduction in maximum SMA and total methane production (TMP). In treatment T3 through T6, the reductions were 44-97% (T3-T6) for SMA, and 30-90% (T3-T6) for TMP. Total LAS removal increased following the increase in the initial LAS concentration (from 36% at T1 to 76% at T6), primarily due to the high degree of sludge adsorption. LAS biodegradation also occurred (32% in all treatments), although this was most likely associated with the formation of non-methane intermediates. Greater removal by adsorption was observed in long-chain homologues, when compared to short-chain homologues (C13 > C10), whereas the opposite occurred for biodegradation (C10 > C13). The C13 homologue was adsorbed to a great extent (in mass) in T4, T5 and T6, and may also have inhibited methane formation in these treatments.


Asunto(s)
Ácidos Alcanesulfónicos/metabolismo , Reactores Biológicos , Methylococcaceae/metabolismo , Aguas del Alcantarillado , Tensoactivos/metabolismo , Aguas Residuales , Purificación del Agua/métodos , Anaerobiosis , Humanos , Microbiología del Agua
10.
Appl Microbiol Biotechnol ; 99(13): 5657-68, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25652654

RESUMEN

Microorganisms are responsible for degrading the raw leachate generated in sanitary landfills, extracting the soluble fraction of the landfill waste and biotransforming organic matter and toxic residues. To increase our understanding of these highly contaminated ecosystems, we analyzed the microbial communities in the leachate produced by three landfill cells of different ages. Using high-throughput 454 pyrosequencing of the 16S rRNA gene, we describe the structure of the leachate communities and present their compositional characteristics. All three communities exhibited a high level of abundance but were undersampled, as indicated by the results of the rarefaction analysis. The distribution of the taxonomic operational units (OTUs) was highly skewed, suggesting a community structure with a few dominant members that are key for the degradation process and numerous rare microorganisms, which could act as a resilient microorganism seeder pool. Members of the phylum Firmicutes were dominant in all of the samples, accounting for up to 62% of the bacterial sequences, and their proportion increased with increasing landfill age. Other abundant phyla included Bacteroidetes, Proteobacteria, and Spirochaetes, which together with Firmicutes comprised 90% of the sequences. The data illustrate a microbial community that degrades organic matter in raw leachate in the early stages, before the methanogenic phase takes place. The genera found fit well into the classical pathways of anaerobic digestion processes.


Asunto(s)
Biota , Microbiología del Suelo , Instalaciones de Eliminación de Residuos , Aerobiosis , Anaerobiosis , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
11.
Biodegradation ; 26(2): 151-60, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25750156

RESUMEN

Azo dyes are the most widely used coloring agents in the textile industry, but are difficult to treat. When textile effluents are discharged into waterways, azo dyes and their degradation products are known to be environmentally toxic. An electrochemical system consisting of a graphite-plate anode and a stainless-steel mesh cathode was placed into a lab-scale anaerobic bioreactor to evaluate the removal of an azo dye (Direct Black 22) from synthetic textile wastewater. At applied potentials of 2.5 and 3.0 V when water electrolysis occurs, no improvement in azo dye removal efficiency was observed compared to the control reactor (an integrated system with electrodes but without an applied potential). However, applying such electric potentials produces oxygen via electrolysis and promoted the aerobic degradation of aromatic amines, which are toxic, intermediate products of anaerobic azo dye degradation. The removal of these amines indicates a decrease in overall toxicity of the effluent from a single-stage anaerobic bioreactor, which warrants further optimization in anaerobic digestion.


Asunto(s)
Compuestos Azo/aislamiento & purificación , Colorantes/aislamiento & purificación , Naftalenos/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Aminas/química , Anaerobiosis , Compuestos Azo/química , Biodegradación Ambiental , Reactores Biológicos , Colorantes/química , Electrodos , Electrólisis , Humanos , Naftalenos/química , Oxígeno/química , Industria Textil , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
12.
J Water Health ; 12(3): 513-25, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25252355

RESUMEN

Harvesting rainwater is a common practice worldwide, particularly in areas with no access to a public water supply or insufficient groundwater reserves. More than two million people living in semiarid regions of Brazil consume rainwater stored in cisterns, and little information is available regarding the water quality. Despite the initial good quality of the rainwater, its harvest and storage can introduce contaminants that must be eliminated before consumption. To evaluate the influence of handling, cistern age and precipitation on the quality of harvested rainwater, we monitored seven cisterns in the semiarid Brazilian Northeast over 4 years. Microbial and physicochemical parameters were monitored once a month, and denaturant gradient gel electrophoresis (DGGE) was performed at the end of the monitoring period. Coliform bacteria were detected in 100% of samples, while Escherichia coli were observed in 73.8%. The alkalinity and conductivity were the highest for the recently built cisterns due to the dissolution of construction materials. The DGGE of the 16S r DNA did not reveal the presence of E. coli. Instead, DGGE bands sequencing indicated that species primarily affiliated with Alphaproteobacteria were present in all cisterns, indicating the presence of microbial ecosystems capable of purifying and stabilizing the stored rainwater.


Asunto(s)
Bacterias/aislamiento & purificación , Biodiversidad , Agua Potable/microbiología , Calidad del Agua , Bacterias/clasificación , Brasil , ADN Bacteriano/genética , Electroforesis en Gel de Gradiente Desnaturalizante , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
13.
Artículo en Inglés | MEDLINE | ID: mdl-38613756

RESUMEN

Linear alkylbenzene sulfonate (LAS) is a synthetic anionic surfactant that is found in certain amounts in wastewaters and even in water bodies, despite its known biodegradability. This study aimed to assess the influence of nitrate, sulphate, and iron (III) on LAS anaerobic degradation and biomass microbial diversity. Batch reactors were inoculated with anaerobic biomass, nutrients, LAS (20 mg L-1), one of the three electron acceptors, and ethanol (40 mg L-1) as a co-substrate. The control treatments, with and without co-substrate, showed limited LAS biodegradation efficiencies of 10 ± 2% and 0%, respectively. However, when nitrate and iron (III) were present without co-substrate, biodegradation efficiencies of 53 ± 4% and 75 ± 3% were achieved, respectively, which were the highest levels observed. Clostridium spp. was prominent in all treatments, while Alkaliphilus spp. and Bacillus spp. thrived in the presence of iron, which had the most significant effect on LAS biodegradation. Those microorganisms were identified as crucial in affecting the LAS anaerobic degradation. The experiments revealed that the presence of electron acceptors fostered the development of a more specialised microbiota, especially those involved in the LAS biodegradation. A mutual interaction between the processes of degradation and adsorption was also shown.

14.
Environ Technol ; : 1-17, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37231744

RESUMEN

The effect on the morpho-physiological parameters and yield of sorghum cultivated in a greenhouse with reclaimed water (RW) and (dehydrated sludge (DS) obtained in a sewage treatment plant, was evaluated. Six treatments (T), with five repetitions each, were carried out in entirely randomized blocks. Water (W) was used in T1 (W) (control), T2 (W + NPK), and T3 (W + DS); RW was used in T4 (RW), T5 (RW + P), and T6 (RW + DS). The results showed that irrigation with only RW (T4), or W + DS (T3) was very suitable for the cultivation since an adequate nutritional supply was provided. The positive effects on the morpho-physiological parameters, plant height, stem diameter and stem length (in cm), were: T3 - 148.8, 1.50, and 103, respectively; T4 - 154, 1.70, and 107, respectively; and on the grain production in weight of 1000 seeds (g), and productivity in grains per plant: T3 - 6.97 and 1453, respectively; T4 - 6.81 and 1636, respectively. Both treatments showed for most of the parameters, no significant differences compared with those of T2 or T5 with supplementary fertilizers. A high production of metabolites (mg g-1) like free amino acids was also shown: T3 - 6.45; T4 - 8.43 and proline: T3 - 1.86; T4 - 1.77, known to be a good indication of a plant natural defence against stress conditions, and in soluble protein: T3 - 11.20; T4 - 13.51. Therefore, since the production of such grains with RW or DS can be environmentally and economically beneficial, their use is recommended for small and medium farmers in semiarid regions.

15.
Environ Sci Pollut Res Int ; 30(35): 84023-84034, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37354302

RESUMEN

This study investigated the performance of a granular filtration system (GFS) composed of a rock filter (RF), a rapid sand filter (RSF), and an activated carbon filter (ACF), applied to the post-treatment of an anaerobic reactor effluent. Four filtration rates (FR) were applied to the GFS (in m3·m-2·d-1): 100-60-60, 100-90-90, 200-120-120, and 200-160-160, for RF-RSF-ACF, respectively. A clarified final effluent with low turbidity (~ 10 NTU), solids (~ 6.5 mg TSS.L-1), and organic matter content (~ 40 mg COD.L-1) was obtained when the GFS worked with FR up to 100-90-90 m3·m-2·d-1. For higher FR, the effluent quality was a little poorer. Principal component analysis showed when the RSF operated at 120 or 160 m3·m-2·d-1, it presented an effluent with higher turbidity which did not affect negatively the ACF performance. The hydraulic load limits in the RSF were reached in periods of 45, 30, and 24.5 h for the FR of 60, 120, and 160 m3·m-2·d-1, respectively, and head loss analysis depicted a more distributed solid retention through the sand depth with the lower FR. Thus, the results revealed that the RF-RSF-ACS system is a promising alternative for effluent polishing of anaerobic reactor, especially when the FR is set at 90 m3·m-2·d-1 or even higher.


Asunto(s)
Eliminación de Residuos Líquidos , Purificación del Agua , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Carbón Orgánico , Filtración/métodos , Purificación del Agua/métodos
16.
Environ Sci Pollut Res Int ; 30(31): 76455-76470, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37277590

RESUMEN

The textile industry is known for its large consumption of water, energy, and chemical products, making it one of the most environmentally impactful activities. To measure these environmental impacts, life cycle analysis (LCA) is a powerful tool that considers the entire process, from the extraction of raw materials to the finalization of textile products. In this context, this work aimed to present a systematic study on the use of the LCA methodology in the environmental assessment of effluents from the textile industry. The survey for data was carried out using the Scopus and Web of Science databases, and the PRISMA method was utilized for organizing and selecting of articles. During the meta-analysis phase bibliometric and specific data were extracted from selected publications. For the bibliometric analysis, a quali-quantitative approach was adopted, and the VOSviewer software was employed. The review encompasses a total of 29 articles, which were published between 1996 and 2023.The majority of the reviewed articles have shown the use of the LCA as a supportive tool for optimization focusing on sustainability, comparing the environmental, economic, and technical aspects through different approaches. The findings revel that China has the highest number of authors among the selected articles, while researchers from France and Italy had the highest number of international collaborations. The ReCiPe and CML methods were the most frequently used for evaluating life cycle inventories, with global warming, terrestrial acidification, ecotoxicity, and ozone depletion being the main impact categories. The use of activated carbon in textile effluents treatment has shown to be promising since it is environmentally friendly.


Asunto(s)
Ambiente , Industria Textil , Animales , Calentamiento Global , Estadios del Ciclo de Vida , China
17.
J Environ Manage ; 113: 510-6, 2012 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-22727951

RESUMEN

The removal of polyaromatic hydrocarbons (PAH) in tropical clay soil contaminated with diesel oil was evaluated. Three bioremediation treatments were used: landfarming (LF), biostimulation (BS) and biostimulation with bioaugmentation (BSBA). The treatment removal efficiency for the total PAHs differed from the efficiencies for the removal of individual PAH compounds. In the case of total PAHs, the removal values obtained at the end of the 129-day experimental period were 87%, 89% and 87% for LF, BS and BSBA, respectively. Thus, the efficiency was not improved by the addition of nutrients and microorganisms. Typically, two distinct phases were observed. A higher removal rate occurred in the first 17 days (P-I) and a lower rate occurred in the last 112 days (P-II). In phase P-I, the zero-order kinetic parameter (µg PAH g(-1) soil d(-1)) values were similar (about 4.6) for all the three treatments. In P-II, values were also similar but much lower (about 0.14). P-I was characterized by a sharp pH decrease to less than 5.0 for the BS and BSBA treatments, while the pH remained near 6.5 for LF. Concerning the 16 individual priority PAH compounds, the results varied depending on the bioremediation treatment used and on the PAH species of interest. In general, compounds with fewer aromatic rings were better removed by BS or BSBA, while those with 4 or more rings were most effectively removed by LF. The biphasic removal behavior was observed only for some compounds. In the case of naphthalene, pyrene, chrysene, benzo[k]fluoranthene and benzo[a]pyrene, removal occurred mostly in the P-I phase. Therefore, the best degradation process for total or individual PAHs should be selected considering the target compounds and the local conditions, such as native microbiota and soil type.


Asunto(s)
Silicatos de Aluminio/análisis , Biodegradación Ambiental , Gasolina/análisis , Suelo/análisis , Arcilla
18.
Sci Total Environ ; 828: 154402, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35276148

RESUMEN

In this study, start-up strategies to develop conventional aerobic granular sludge (AGS) and algal aerobic granular sludge (AAGS) (photogranules), were investigated. The granulation experiment was conducted in four sequencing batch reactors (SBR), of which two were conventional SBRs (RC1, RC2) used as control, and two were photo-SBRs (R1, R2). R1 and RC1 were operated with a 40-min feeding during the reactors´ anaerobic cycle period, whereas R2 and RC2 with a 60-min feeding. All the reactors were operated in two phases with a C:N = 4:1 in Phase I and 8:1 in Phase II. In Phase I, AGS in RC1 and RC2 was formed 15 days before the AAGS development in R1 and R2. However, the AAGS generally presented better stability and higher diameter. On the other hand, AGS presented greater abundance of extracellular polymeric substances producing organisms, such as Xanthomonadacea and Rhodocyclaceae. Chemical oxygen demand (COD) and NH4+-N removal efficiencies were similar in all the four reactors of approximately 70% and 60%, respectively. In this phase, despite the good biomass structure, the reactors were not able to completely oxidize the high influent concentration of NH4+-N (100 mg.L-1) and COD (400 mg.L-1). This can be associated to the short time of the aerobic phase and low biomass content. In Phase II in all the reactors, a good increase in COD and NH4+-N removal efficiencies to values above 95% and 93%, respectively, was achieved under a higher C:N ratio of 8 with lower influent concentration of NH4+-N (50 mg.L-1). The 60-min anaerobic feeding period in R2 and RC2 resulted in greater removal efficiency of nitrogen, confirming that small variation on cycle periods can affect the biomass composition; the biomass presented more compact granules and larger diameters under 60 min-feeding when compared with those obtained with 40 min-feeding in Phase I.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aerobiosis , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Nitrógeno/análisis , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos
19.
Sci Total Environ ; 843: 156988, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35772566

RESUMEN

Simultaneous removal of organic matter, nitrogen, and phosphorus, via simultaneous nitrification and denitrification (SND) and enhanced biological phosphorus removal processes, was evaluated in a pilot-scale sequential batch reactor. The focus was on granule's morphology, stability, microbiological composition, and reactor performance while treating diluted domestic wastewater with total chemical oxygen demand (CODt) of ≈ 200 mg.L-1. The applied organic loading rate was 0.9 ± 0.3 kg CODt.m-3.d-1 in the experiment. Aerobic granular sludge developed gradually. After 87-day operation, granules (diameter ≥ 0.2 mm) were ≥ 50 % of the biomass, and after 168 days, complete granulation was obtained (≥ 80 % of biomass). In the third period (days 168-247, complete granulation), mixed liquor biomass reached a volatile suspended solids (VSS) concentration of 1.2 ± 0.3 g VSS.L-1, with the granules remaining stable until the experimental end. In this period, low effluent concentrations of COD, nitrogen (NH4+-N, NO2--N and NO3--N) and phosphate (PO43-P) were obtained (mg.L-1): 36 ± 11; 4 ± 5; 3 ± 3, 4 ± 5; and 0.9 ± 0.4, respectively. COD, NH4+-N, and PO43--P removal efficiencies (%) were 80 ± 11; 83 ± 20; and 55 ± 24, respectively. Heterotrophic nitrification and SND were observed, resulting in a process efficiency of 31 % even with dissolved oxygen applied to saturation. The phosphate removal was mainly attributed to denitrifying phosphorus accumulating organisms. Pseudomonas, the dominant genus found, acted in nitrogen and phosphorus removal. Pseudoxanthomonas also assisted in phosphorus removal. Bacterial communities in the flocs (≈ 20 % of biomass) during the last period were similar to those in the granules; therefore, they constituted the basis for granule formation, directly contributed to the simultaneous good removal of organic matter and nutrients.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Reactores Biológicos/microbiología , Desnitrificación , Nitrificación , Nitrógeno/análisis , Nutrientes , Fosfatos , Fósforo , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química
20.
Mar Pollut Bull ; 169: 112553, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34091245

RESUMEN

Sensitive biomes, such as coastal ecosystems, have become increasingly susceptible to environmental impacts caused by oil logistics and storing, which, although more efficient nowadays, still cause spills. Thus, bioremediation techniques attract attention owing to their low impact on the environment. Among petroleum-based compounds, polycyclic aromatic hydrocarbons (PAHs) are known for their potential impact and persistence in the environment. Therefore, PAH bioremediation is notably a technique capable of reducing these polluting compounds in the environment. However, there is a lack of understanding of microbial growth process conditions, leading to a less efficient choice of bioremediation methods. This article provides a review of the bioremediation processes in mangroves contaminated with oils and PAHs and an overview of some physicochemical and biological factors. Special attention was given to the lack of approach regarding experiments that have been conducted in situ and that considered the predominance of the anaerobic condition of mangroves.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Biodegradación Ambiental , Ecosistema , Hidrocarburos Policíclicos Aromáticos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA