Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; : 1-21, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014992

RESUMEN

Salmonella is a diverse and ubiquitous group of bacteria and a major zoonotic pathogen implicated in several foodborne disease outbreaks worldwide. With more than 2500 distinct serotypes, this pathogen has evolved to survive in a wide spectrum of environments and across multiple hosts. The primary and most common source of transmission is through contaminated food or water. Although the main sources have been primarily linked to animal-related food products, outbreaks due to the consumption of contaminated plant-related food products have increased in the last few years. The perceived ability of Salmonella to trigger defensive mechanisms following pre-exposure to sublethal acid conditions, namely acid adaptation, has renewed a decade-long attention. The impact of acid adaptation on the subsequent resistance against lethal factors of the same or multiple stresses has been underscored by multiple studies. Α plethora of studies have been published, aiming to outline the factors that- alone or in combination- can impact this phenomenon and to unravel the complex networking mechanisms underlying its induction. This review aims to provide a current and updated insight into the factors and mechanisms that rule this phenomenon.

2.
Food Microbiol ; 95: 103680, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33397612

RESUMEN

The innate and inducible resistance of six Salmonella strains (4/74, FS8, FS115, P167807, ATCC 13076, WT) in mayonnaise at 5 °C following adaptation to different pH/undissociated acetic acid (UAA) combinations (15mM/pH5.0, 35mM/pH5.5, 45mM/pH6.0) was investigated. The inherent and acid-induced responses were strain-dependent. Two strains (ATCC 13076, WT), albeit not the most resistant innately, exhibited the most prominent adaptive potential. Limited/no adaptability was observed regarding the rest strains, though being more resistant inherently. The individual effect of pH and UAA adaptation in the phenotypic and transcriptomic profiles of ATCC 13076 and WT was further examined. The type (pH, UAA) and magnitude of stress intensity affected their responses. Variations in the type and magnitude of stress intensity also determined the relative gene expression of four genes (adiA, cadB, rpoS, ompR) implicated in Salmonella acid resistance mechanisms. adiA and cadB were overexpressed following adaptation to some treatments; rpoS and ompR were downregulated following adaptation to 15mM/pH5.0 and 35mM/pH5.5, respectively. Nonetheless, the transcriptomic profiles did not always correlate with the corresponding phenotypes. In conclusion, strain variations in Salmonella are extensive. The ability of the strains to adapt and induce resistant phenotypes and acid resistance-related genes is affected by the type and magnitude of the stress applied during adaptation.


Asunto(s)
Ácido Acético/metabolismo , Condimentos/microbiología , Salmonella/fisiología , Ácido Acético/química , Adaptación Fisiológica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Condimentos/análisis , Microbiología de Alimentos , Almacenamiento de Alimentos , Concentración de Iones de Hidrógeno , Refrigeración , Salmonella/genética
3.
Microorganisms ; 11(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36677358

RESUMEN

Kopanisti is a Greek PDO cheese, which is traditionally produced by the addition of an amount of over-mature Kopanisti, called Mana Kopanisti, to initiate cheese ripening. The aim of this study was the production of four types of Kopanisti cheese (A-D) using pasteurized cow milk, and a combination of the following starters/adjuncts in order to test their ability to be used in Kopanisti cheese production: A: Lactococcus lactis subsp. lactis and Lacticaseibacillus paracasei, B: L. lactis and Lc. paracasei/Mana Kopanisti, C: L. lactis and Lc. paracasei/Ligilactobacillus acidipiscis and Loigolactobacillus rennini, D: Lig. acidipiscis and Loig. rennini. Throughout production and ripening, classical microbiological, metataxonomics and physicochemical analyses were employed, while the final products (Day 35) were subjected to sensory analysis as well. Most interestingly, beta-diversity analysis of the metataxonomics data revealed the clusters constructed among the Kopanisti types based on the different inoculation schemes. On day 35, Kopanisti A-C types clustered together due to their similar 16S microbiota, while Kopanisti D was highly differentiated. On the contrary, ITS data clustered Kopanisti B and C together, while Kopanisti A and D were grouped seperately. Finally, based on the sensory evaluation, Kopanisti C appeared to have the most suitable bacteria cocktail for the Kopanisti cheese production. Therefore, not only were the conventional starters used, but also the Lig. acidipiscis and Loig. rennini strains could be used in a standardized Kopanisti cheese production that could lead to final products of high quality and safety.

4.
Sci Rep ; 11(1): 21971, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34753973

RESUMEN

Nine odorless laboratory-collected hydro-distilled aqueous extracts (basil, calendula, centrifuged oregano, corn silk, laurel, oregano, rosemary, spearmint, thyme) and one industrial steam-distilled oregano hydrolate acquired as by-products of essential oils purification were screened for their in vitro antimicrobial activity against three Salmonella Typhimurium strains (4/74, FS8, FS115) at 4 and 37 °C. Susceptibility to the extracts was mainly plant- and temperature-dependent, though strain dependent effects were also observed. Industrial oregano hydrolate eliminated strains immediately after inoculation, exhibiting the highest antimicrobial potential. Hydro-distilled extracts eliminated/reduced Salmonella levels during incubation at 4 °C. At 37 °C, oregano, centrifuged oregano, thyme, calendula and basil were bactericidal while spearmint, rosemary and corn silk bacteriostatic. A strain-dependent effect was observed for laurel. The individual or combined effect of marinades and edible coatings prepared of industrial hydrolate and hydro-distilled oregano extracts with or without oregano essential oil (OEO) was tested in pork meat at 4 °C inoculated with FS8 strain. Lower in situ activity was observed compared to in vitro assays. Marinades and edible coatings prepared of industrial oregano hydrolate + OEO were the most efficient in inhibiting pathogen. Marination in oregano extract and subsequent coating with either 50% oregano extract + OEO or water + OEO enhanced the performance of oregano extract. In conclusion, by-products of oregano essential oil purification may be promising alternative antimicrobials to pork meat stored under refrigeration when applied in the context of multiple hurdle approach.


Asunto(s)
Antibacterianos/farmacología , Inocuidad de los Alimentos , Extractos Vegetales/farmacología , Carne de Cerdo/microbiología , Salmonella typhimurium/efectos de los fármacos , Animales , Antibacterianos/química , Cromatografía Líquida de Alta Presión/métodos , Recuento de Colonia Microbiana , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Salmonella typhimurium/aislamiento & purificación , Espectrometría de Masa por Ionización de Electrospray/métodos , Porcinos , Espectrometría de Masas en Tándem/métodos , Agua/química
5.
PLoS One ; 15(7): e0234999, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32702039

RESUMEN

Acid adaptation enhances survival of foodborne pathogens under lethal acid conditions that prevail in several food-related ecosystems. In the present study, the role of undissociated acetic acid in inducing acid resistance of Salmonella Enteritidis Phage Type 4 both in laboratory media and in an acid food matrix was investigated. Several combinations of acetic acid (0, 15, 25, 35 and 45 mM) and pH values (4.0, 4.5, 5.0, 5.5, 6.0) were screened for their ability to activate acid resistance mechanisms of pathogen exposed to pH 2.5 (screening assay). Increased survival was observed when increasing undissociated acetic acid within a range of sublethal concentrations (1.9-5.4 mM), but only at pH 5.5 and 6.0. No effect was observed at lower pH values, regardless of the undissociated acetic acid levels. Three combinations (15mM/pH5.0, 35mM/pH5.5, 45mM/pH6.0) were selected and further used for adaptation prior to inoculation in commercial tarama (fish roe) salad, i.e., an acid spread (pH 4.35 ± 0.02), stored at 5°C. Surprisingly and contrary to the results of the screening assay, none of the acid adaptation treatments enhanced survival of Salmonella Enteritidis in the food matrix, as compared to non-adapted cells (control). Further examination of the food pH value, acidulant and storage (challenge) temperature on the responses of the pathogen adapted to 15mM/pH5.0, 35mM/pH5.5 and 45mM/pH6.0 was performed in culture media. Cells adapted to 35mM/pH5.5 were unable to induce acid resistance when exposed to pH 4.35 (tarama salad pH value) at 37°C and 5°C, whereas incubation under refrigeration (5°C) at pH 4.35 sensitized 45mM/pH6.0 adapted cells against the subsequent acid and cold stress. In conclusion, pre-exposure to undissociated acetic acid affected the adaptive responses of Salmonella Enteritidis Phage Type 4 in a concentration- and pH-dependent manner, with regard to conditions prevailing during acid challenge.


Asunto(s)
Ácido Acético/farmacología , Adaptación Fisiológica/efectos de los fármacos , Bacteriófagos , Microbiología de Alimentos , Salmonella enteritidis/virología , Ácidos/farmacología , Animales , Relación Dosis-Respuesta a Droga , Productos Pesqueros/microbiología , Concentración de Iones de Hidrógeno , Refrigeración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA