RESUMEN
The transient receptor potential ankyrin 1 (TRPA1) channel has been implicated in pathophysiological processes that include asthma, cough, and inflammatory pain. Agonists of TRPA1 such as mustard oil and its key component allyl isothiocyanate (AITC) cause pain and neurogenic inflammation in humans and rodents, and TRPA1 antagonists have been reported to be effective in rodent models of pain. In our pursuit of TRPA1 antagonists as potential therapeutics, we generated AMG0902, a potent (IC90 of 300 nM against rat TRPA1), selective, brain penetrant (brain to plasma ratio of 0.2), and orally bioavailable small molecule TRPA1 antagonist. AMG0902 reduced mechanically evoked C-fiber action potential firing in a skin-nerve preparation from mice previously injected with complete Freund's adjuvant, supporting the role of TRPA1 in inflammatory mechanosensation. In vivo target coverage of TRPA1 by AMG0902 was demonstrated by the prevention of AITC-induced flinching/licking in rats. However, oral administration of AMG0902 to rats resulted in little to no efficacy in models of inflammatory, mechanically evoked hypersensitivity; and no efficacy was observed in a neuropathic pain model. Unbound plasma concentrations achieved in pain models were about 4-fold higher than the IC90 concentration in the AITC target coverage model, suggesting that either greater target coverage is required for efficacy in the pain models studied or TRPA1 may not contribute significantly to the underlying mechanisms.
Asunto(s)
Hiperalgesia/metabolismo , Inflamación/complicaciones , Ciática/complicaciones , Canales Catiónicos TRPC/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Aminas/uso terapéutico , Analgésicos/uso terapéutico , Animales , Antiinflamatorios no Esteroideos/farmacología , Células CHO , Cricetulus , Ácidos Ciclohexanocarboxílicos/uso terapéutico , Conducta Exploratoria/efectos de los fármacos , Adyuvante de Freund/toxicidad , Gabapentina , Hiperalgesia/tratamiento farmacológico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Naproxeno/farmacología , Fibras Nerviosas Amielínicas/efectos de los fármacos , Fibras Nerviosas Amielínicas/fisiología , Umbral del Dolor/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Ciática/tratamiento farmacológico , Canal Catiónico TRPA1 , Canales Catiónicos TRPC/antagonistas & inhibidores , Canales Catiónicos TRPC/genética , Ácido gamma-Aminobutírico/uso terapéuticoRESUMEN
BACKGROUND: Migraine headache is a neurological disorder affecting millions worldwide. However, little is known about the mechanisms contributing to migraine. Recent genome-wide association studies have found single nucleotide polymorphisms in the gene encoding transient receptor potential channel M8. Transient receptor potential channel M8 is generally known as a cold receptor but it has been implicated in pain signaling and may play a role in migraine pain. METHODS: In order to investigate whether transient receptor potential channel M8 may contribute to the pain of migraine, the transient receptor potential channel M8 activator icilin was applied to the dura mater using a rat behavioral model of headache. Cutaneous allodynia was measured for 5 hours using Von Frey filaments. RESULTS: Dural application of icilin produced cutaneous facial and hind paw allodynia that was attenuated by systemic pretreatment with the transient receptor potential channel M8-selective antagonist AMG1161 (10 mg/kg p.o.). Further, the anti-migraine agent sumatriptan (0.6 mg/kg s.c.) or the non-selective NOS inhibitor L-NAME (20 mg/kg i.p.) also attenuated allodynia when given as a pretreatment. CONCLUSIONS: These data indicate that transient receptor potential channel M8 activation in the meninges produces behaviors in rats that are consistent with migraine and that are sensitive to pharmacological mechanisms known to have efficacy for migraine in humans. The findings suggest that activation of meningeal transient receptor potential channel M8 may contribute to the pain of migraine.
Asunto(s)
Hiperalgesia/fisiopatología , Trastornos Migrañosos/fisiopatología , Canales Catiónicos TRPM/metabolismo , Animales , Modelos Animales de Enfermedad , Hiperalgesia/metabolismo , Masculino , Trastornos Migrañosos/metabolismo , Pirimidinonas/farmacología , Ratas , Ratas Sprague-DawleyRESUMEN
The rodent transient receptor potential ankyrin-1 (TRPA1) channel has been hypothesized to serve as a temperature sensor for thermoregulation in the cold. We tested this hypothesis by using deletion of the Trpa1 gene in mice and pharmacological blockade of the TRPA1 channel in rats. In both Trpa1(-/-) and Trpa1(+/+) mice, severe cold exposure (8°C) resulted in decreases of skin and deep body temperatures to â¼8°C and 13°C, respectively, both temperatures being below the reported 17°C threshold temperature for TRPA1 activation. Under these conditions, Trpa1(-/-) mice had the same dynamics of body temperature as Trpa1(+/+) mice and showed no weakness in the tail skin vasoconstriction response or thermogenic response to cold. In rats, the effects of pharmacological blockade were studied by using two chemically unrelated TRPA1 antagonists: the highly potent and selective compound A967079, which had been characterized earlier, and the relatively new compound 43 ((4R)-1,2,3,4-tetrahydro-4-[3-(3-methoxypropoxy)phenyl]-2-thioxo-5H-indeno[1,2-d]pyrimidin-5-one), which we further characterized in the present study and found to be highly potent (IC50 against cold of â¼8 nm) and selective. Intragastric administration of either antagonist at 30 mg/kg before severe (3°C) cold exposure did not affect the thermoregulatory responses (deep body and tail skin temperatures) of rats, even though plasma concentrations of both antagonists well exceeded their IC50 value at the end of the experiment. In the same experimental setup, blocking the melastatin-8 (TRPM8) channel with AMG2850 (30 mg/kg) attenuated cold-defense mechanisms and led to hypothermia. We conclude that TRPA1 channels do not drive autonomic thermoregulatory responses to cold in rodents.
Asunto(s)
Sistema Nervioso Autónomo/fisiología , Regulación de la Temperatura Corporal/genética , Péptidos y Proteínas de Señalización Intracelular/fisiología , Sensación Térmica/genética , Animales , Regulación de la Temperatura Corporal/efectos de los fármacos , Células CHO , Frío , Cricetulus , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteínas HSP90 de Choque Térmico , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones , Ratones Transgénicos , Oximas/sangre , Oximas/farmacología , Dolor/inducido químicamente , Dolor/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Temperatura Cutánea/efectos de los fármacos , Canales Catiónicos TRPM/antagonistas & inhibidores , Sensación Térmica/efectos de los fármacosRESUMEN
The transient receptor potential ankyrin 1 (TRPA1) channel has been implicated in different pathophysiologies that include asthma, cough, itch, and inflammatory pain. Agonists of TRPA1 such as mustard oil and its key component allyl isothiocyanate (AITC) cause pain and neurogenic inflammation in humans and pain behaviors in rodents. Hence, TRPA1 antagonists are being pursued as potential therapeutics. With the goal of generating monoclonal antibodies (mAbs) to human TRPA1 that could act as selective antagonists, we immunized mice with a variety of antigens expressing TRPA1 channels. After generation of hybridomas, the hybridoma conditioned media were screened to identify the mAbs that bind TRPA1 channels by a flow cytometry assay utilizing U2OS or Chinese hamster ovary (CHO) cells stably expressing TRPA1. The purified IgGs from the hybridomas that showed selective binding to TRPA1 were evaluated for antagonism in agonist-induced (45)Ca(2+) uptake assays using CHO-TRPA1 cells. Several of the mAbs showed concentration-dependent inhibition of AITC and cold (4°C) activation of TRPA1. The most potent mAb, 2B10, had IC50 values of approximately 260 and 90 nM in the two assays, respectively. These antagonist mAbs also blocked osmotically activated TRPA1 as well as activation by an endogenous agonist (4-oxo-2-nonenal). In summary, we generated mouse mAbs against TRPA1 that act as antagonists of multiple modes of TRPA1 activation.
Asunto(s)
Anticuerpos Monoclonales/farmacología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Aldehídos/farmacología , Secuencia de Aminoácidos , Animales , Células CHO , Calcio/metabolismo , Canales de Calcio , Cricetulus , Humanos , Ratones , Datos de Secuencia Molecular , Canal Catiónico TRPA1RESUMEN
The transient receptor potential ankyrin 1 (TRPA1) channel is activated by noxious stimuli including chemical irritants and endogenous inflammatory mediators. Antagonists of this channel are currently being investigated for use as therapeutic agents for treating pain, airway disorders, and itch. A novel azabenzofuran series was developed that demonstrated in vitro inhibition of allyl isothiocyanate (AITC)-induced (45)Ca(2+) uptake with nanomolar potencies against both human and rat TRPA1. From this series, compound 10 demonstrated in vivo target coverage in an AITC-induced flinching model in rats while providing unbound plasma concentrations up to 16-fold higher than the TRPA1 rat IC50.
Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Diseño de Fármacos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Canales Catiónicos TRPC/antagonistas & inhibidores , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Animales , Bloqueadores de los Canales de Calcio/síntesis química , Bloqueadores de los Canales de Calcio/química , Canales de Calcio/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Compuestos Heterocíclicos con 3 Anillos/síntesis química , Compuestos Heterocíclicos con 3 Anillos/química , Humanos , Isotiocianatos/antagonistas & inhibidores , Estructura Molecular , Proteínas del Tejido Nervioso/metabolismo , Ratas , Relación Estructura-Actividad , Canal Catiónico TRPA1 , Canales Catiónicos TRPC/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismoRESUMEN
We studied N-(2-aminoethyl)-N-(4-(benzyloxy)-3-methoxybenzyl)thiophene-2-carboxamide hydrochloride (M8-B), a selective and potent antagonist of the transient receptor potential melastatin-8 (TRPM8) channel. In vitro, M8-B blocked cold-induced and TRPM8-agonist-induced activation of rat, human, and murine TRPM8 channels, including those on primary sensory neurons. In vivo, M8-B decreased deep body temperature (T(b)) in Trpm8(+/+) mice and rats, but not in Trpm8(-/-) mice, thus suggesting an on-target action. Intravenous administration of M8-B was more effective in decreasing T(b) in rats than intrathecal or intracerebroventricular administration, indicating a peripheral action. M8-B attenuated cold-induced c-Fos expression in the lateral parabrachial nucleus, thus indicating a site of action within the cutaneous cooling neural pathway to thermoeffectors, presumably on sensory neurons. A low intravenous dose of M8-B did not affect T(b) at either a constantly high or a constantly low ambient temperature (T(a)), but the same dose readily decreased T(b) if rats were kept at a high T(a) during the M8-B infusion and transferred to a low T(a) immediately thereafter. These data suggest that both a successful delivery of M8-B to the skin (high cutaneous perfusion) and the activation of cutaneous TRPM8 channels (by cold) are required for the hypothermic action of M8-B. At tail-skin temperatures <23°C, the magnitude of the M8-B-induced decrease in T(b) was inversely related to skin temperature, thus suggesting that M8-B blocks thermal (cold) activation of TRPM8. M8-B affected all thermoeffectors studied (thermopreferendum, tail-skin vasoconstriction, and brown fat thermogenesis), thus suggesting that TRPM8 is a universal cold receptor in the thermoregulation system.
Asunto(s)
Temperatura Corporal/fisiología , Frío , Ganglios Espinales/fisiología , Tiritona/fisiología , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/deficiencia , Animales , Sistema Nervioso Autónomo/efectos de los fármacos , Sistema Nervioso Autónomo/fisiología , Conducta Animal/efectos de los fármacos , Temperatura Corporal/efectos de los fármacos , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Ganglios Espinales/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Preparaciones Farmacéuticas/administración & dosificación , Ratas , Ratas Wistar , Tiritona/efectos de los fármacos , Tiofenos/farmacologíaRESUMEN
This study aimed at determining the thermoregulatory phenotype of mice lacking transient receptor potential vanilloid-1 (TRPV1) channels. We used Trpv1 knockout (KO) mice and their genetically unaltered littermates to study diurnal variations in deep body temperature (T(b)) and thermoeffector activities under basal conditions, as well as thermoregulatory responses to severe heat and cold. Only subtle alterations were found in the basal T(b) of Trpv1 KO mice or in their T(b) responses to thermal challenges. The main thermoregulatory abnormality of Trpv1 KO mice was a different pattern of thermoeffectors used to regulate T(b). On the autonomic side, Trpv1 KO mice were hypometabolic (had a lower oxygen consumption) and hypervasoconstricted (had a lower tail skin temperature). In agreement with the enhanced skin vasoconstriction, Trpv1 KO mice had a higher thermoneutral zone. On the behavioral side, Trpv1 KO mice preferred a lower ambient temperature and expressed a higher locomotor activity. Experiments with pharmacological TRPV1 agonists (resiniferatoxin and anandamide) and a TRPV1 antagonist (AMG0347) confirmed that TRPV1 channels located outside the brain tonically inhibit locomotor activity. With age (observed for up to 14 months), the body mass of Trpv1 KO mice exceeded that of controls, sometimes approaching 60 g. In summary, Trpv1 KO mice possess a distinct thermoregulatory phenotype, which is coupled with a predisposition to age-associated overweight and includes hypometabolism, enhanced skin vasoconstriction, decreased thermopreferendum, and hyperkinesis. The latter may be one of the primary deficiencies in Trpv1 KO mice. We propose that TRPV1-mediated signals from the periphery tonically suppress the general locomotor activity.
Asunto(s)
Envejecimiento/metabolismo , Regulación de la Temperatura Corporal/genética , Hipercinesia/metabolismo , Sobrepeso/metabolismo , Canales Catiónicos TRPV/deficiencia , Acrilamidas/farmacología , Animales , Ácidos Araquidónicos/farmacología , Temperatura Corporal/genética , Frío , Diterpenos/farmacología , Endocannabinoides , Femenino , Calor , Hipercinesia/genética , Locomoción , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora , Pruebas Neuropsicológicas , Consumo de Oxígeno , Fenotipo , Reacción en Cadena de la Polimerasa , Alcamidas Poliinsaturadas/farmacología , Piridinas/farmacología , Piel/irrigación sanguínea , Temperatura Cutánea/genética , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/genética , VasoconstricciónRESUMEN
BACKGROUND: Transient receptor potential cation channel subfamily M member 8 (TRPM8) is activated by cold temperature in vitro and has been demonstrated to act as a 'cold temperature sensor' in vivo. Although it is known that agonists of this 'cold temperature sensor', such as menthol and icilin, cause a transient increase in body temperature (Tb), it is not known if TRPM8 plays a role in Tb regulation. Since TRPM8 has been considered as a potential target for chronic pain therapeutics, we have investigated the role of TRPM8 in Tb regulation. RESULTS: We characterized five chemically distinct compounds (AMG0635, AMG2850, AMG8788, AMG9678, and Compound 496) as potent and selective antagonists of TRPM8 and tested their effects on Tb in rats and mice implanted with radiotelemetry probes. All five antagonists used in the study caused a transient decrease in Tb (maximum decrease of 0.98°C). Since thermoregulation is a homeostatic process that maintains Tb about 37°C, we further evaluated whether repeated administration of an antagonist attenuated the decrease in Tb. Indeed, repeated daily administration of AMG9678 for four consecutive days showed a reduction in the magnitude of the Tb decrease Day 2 onwards. CONCLUSIONS: The data reported here demonstrate that TRPM8 channels play a role in Tb regulation. Further, a reduction of magnitude in Tb decrease after repeated dosing of an antagonist suggests that TRPM8's role in Tb maintenance may not pose an issue for developing TRPM8 antagonists as therapeutics.
Asunto(s)
Regulación de la Temperatura Corporal , Naftiridinas/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Regulación de la Temperatura Corporal/efectos de los fármacos , Células CHO , Cricetinae , Relación Dosis-Respuesta a Droga , Concentración 50 Inhibidora , Activación del Canal Iónico/efectos de los fármacos , Masculino , Moduladores del Transporte de Membrana/química , Moduladores del Transporte de Membrana/farmacología , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Canales Catiónicos TRPM/antagonistas & inhibidoresRESUMEN
Liver fibrosis progression in chronic liver disease leads to cirrhosis, liver failure, or hepatocellular carcinoma and often ends in liver transplantation. Even with an increased understanding of liver fibrogenesis and many attempts to generate therapeutics specifically targeting fibrosis, there is no approved treatment for liver fibrosis. To further understand and characterize the driving mechanisms of liver fibrosis, we developed a high-throughput genome-wide CRISPR/Cas9 screening platform to identify hepatic stellate cell (HSC)-derived mediators of transforming growth factor (TGF)-ß-induced liver fibrosis. The functional genomics phenotypic screening platform described here revealed the novel biology of TGF-ß-induced fibrogenesis and potential drug targets for liver fibrosis.
Asunto(s)
Células Estrelladas Hepáticas , Factor de Crecimiento Transformador beta , Fibrosis , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Hígado/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Transducción de Señal , Factor de Crecimiento Transformador beta/efectos adversos , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
INTRODUCTION: The Helping to End Addiction Long-termSM Initiative supports a wide range of programs to develop new or improved prevention and opioid addiction treatment strategies. An essential component of this effort is to accelerate development of non-opioid pain therapeutics. In all fields of medicine, therapeutics development is an arduous process and late-stage translational efforts such as clinical trials to validate targets are particularly complex and costly. While there are plentiful novel targets for pain treatment, successful clinical validation is rare. It is therefore crucial to develop processes whereby therapeutic targets can be reasonably 'de-risked' prior to substantial late-stage validation efforts. Such rigorous validation of novel therapeutic targets in the preclinical space will give potential private sector partners the confidence to pursue clinical validation of promising therapeutic concepts and compounds. AREAS COVERED: In 2020, the National Institutes of Health (NIH) held the Target Validation for Non-Addictive Therapeutics Development for Pain workshop to gather insights from key opinion leaders in academia, industry, and venture-financing. EXPERT OPINION: The result was a roadmap for pain target validation focusing on three modalities: 1) human evidence; 2) assay development in vitro; 3) assay development in vivo.
Asunto(s)
Trastornos Relacionados con Opioides , Dolor , Humanos , Dolor/tratamiento farmacológico , Trastornos Relacionados con Opioides/tratamiento farmacológicoRESUMEN
Transient receptor potential vanilloid-1 (TRPV1) antagonists are widely viewed as next-generation pain therapeutics. However, these compounds cause hyperthermia, a serious side effect. TRPV1 antagonists differentially block three modes of TRPV1 activation: by heat, protons, and chemical ligands (e.g., capsaicin). We asked what combination of potencies in these three modes of TRPV1 activation corresponds to the lowest potency of a TRPV1 antagonist to cause hyperthermia. We studied hyperthermic responses of rats, mice, and guinea pigs to eight TRPV1 antagonists with different pharmacological profiles and used mathematical modeling to find a relative contribution of the blockade of each activation mode to the development of hyperthermia. We found that the hyperthermic effect has the highest sensitivity to the extent of TRPV1 blockade in the proton mode (0.43 to 0.65) with no to moderate sensitivity in the capsaicin mode (-0.01 to 0.34) and no sensitivity in the heat mode (0.00 to 0.01). We conclude that hyperthermia-free TRPV1 antagonists do not block TRPV1 activation by protons, even if they are potent blockers of the heat mode, and that decreasing the potency to block the capsaicin mode may further decrease the potency to cause hyperthermia.
Asunto(s)
Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Fiebre/inducido químicamente , Fiebre/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo , Animales , Capsaicina/antagonistas & inhibidores , Sistema Nervioso Central/fisiopatología , Simulación por Computador , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Fiebre/fisiopatología , Cobayas , Calor/efectos adversos , Masculino , Ratones , Ratones Noqueados , Neurofarmacología/métodos , Terapia de Protones , Ratas , Ratas Wistar , Fármacos del Sistema Sensorial/farmacologíaRESUMEN
Hypothermia occurs in the most severe cases of systemic inflammation, but the mechanisms involved are poorly understood. This study evaluated whether the hypothermic response to bacterial lipopolysaccharide (LPS) is modulated by the endocannabinoid anandamide(AEA) and its receptors: cannabinoid-1 (CB1), cannabinoid-2 (CB2) and transient receptor potential vanilloid-1 (TRPV1). In rats exposed to an ambient temperature of 22â¦C, a moderate dose of LPS (25 - 100 µg kg−1 I.V.) induced a fall in body temperature with a nadir at â¼100 minpostinjection. This response was not affected by desensitization of intra-abdominal TRPV1 receptors with resiniferatoxin (20 µg kg - 1 I.P.), by systemic TRPV1 antagonism with capsazepine(40mg kg−1 I.P.), or by systemic CB2 receptor antagonism with SR144528 (1.4 mg kg−1 I.P.).However, CB1 receptor antagonism by rimonabant (4.6mg kg−1 I.P.) or SLV319 (15mg kg−1 I.P.)blocked LPS hypothermia. The effect of rimonabant was further studied. Rimonabant blocked LPS hypothermia when administered I.C.V. at a dose (4.6 µg) that was too low to produce systemic effects. The blockade of LPS hypothermia by I.C.V. rimonabant was associated with suppression of the circulating level of tumour necrosis factor-α. In contrast to rimonabant,the I.C.V. administration of AEA (50 µg) enhanced LPS hypothermia. Importantly, I.C.V. AEAdid not evoke hypothermia in rats not treated with LPS, thus indicating that AEA modulates LPS-activated pathways in the brain rather than thermo effector pathways. In conclusion, the present study reveals a novel, critical role of brain CB1 receptors in LPS hypothermia. Brain CB1 receptors may constitute a new therapeutic target in systemic inflammation and sepsis.
Asunto(s)
Regulación de la Temperatura Corporal , Encéfalo/metabolismo , Hipotermia/metabolismo , Lipopolisacáridos , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Canales Catiónicos TRPV/metabolismo , Análisis de Varianza , Animales , Ácidos Araquidónicos/metabolismo , Regulación de la Temperatura Corporal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Canfanos/administración & dosificación , Capsaicina/administración & dosificación , Capsaicina/análogos & derivados , Modelos Animales de Enfermedad , Diterpenos/administración & dosificación , Endocannabinoides , Femenino , Hipotermia/inducido químicamente , Hipotermia/fisiopatología , Hipotermia/prevención & control , Inyecciones Intraperitoneales , Inyecciones Intravenosas , Inyecciones Intraventriculares , Masculino , Piperidinas/administración & dosificación , Alcamidas Poliinsaturadas/metabolismo , Pirazoles/administración & dosificación , Ratas , Ratas Long-Evans , Ratas Wistar , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB2/antagonistas & inhibidores , Rimonabant , Transducción de Señal , Sulfonamidas/administración & dosificación , Canales Catiónicos TRPV/antagonistas & inhibidores , Factores de TiempoRESUMEN
Local anesthetics (LAs) block the generation and propagation of action potentials by interacting with specific sites of voltage-gated Na(+) channels. LAs can also excite sensory neurons and be neurotoxic through mechanisms that are as yet undefined. Nonspecific cation channels of the transient receptor potential (TRP) channel family that are predominantly expressed by nociceptive sensory neurons render these neurons sensitive to a variety of insults. Here we demonstrated that the LA lidocaine activated TRP channel family receptors TRPV1 and, to a lesser extent, TRPA1 in rodent dorsal root ganglion sensory neurons as well as in HEK293t cells expressing TRPV1 or TRPA1. Lidocaine also induced a TRPV1-dependent release of calcitonin gene-related peptide (CGRP) from isolated skin and peripheral nerve. Lidocaine sensitivity of TRPV1 required segments of the putative vanilloid-binding domain within and adjacent to transmembrane domain 3, was diminished under phosphatidylinositol 4,5-bisphosphate depletion, and was abrogated by a point mutation at residue R701 in the proximal C-terminal TRP domain. These data identify TRPV1 and TRPA1 as putative key elements of LA-induced nociceptor excitation. This effect is sufficient to release CGRP, a key component of neurogenic inflammation, and warrants investigation into the role of TRPV1 and TRPA1 in LA-induced neurotoxicity.
Asunto(s)
Anestésicos Locales/toxicidad , Lidocaína/toxicidad , Neuronas Aferentes/efectos de los fármacos , Canales Catiónicos TRPV/agonistas , Animales , Ancirinas , Péptido Relacionado con Gen de Calcitonina/metabolismo , Canales de Calcio/efectos de los fármacos , Capsaicina/farmacología , Línea Celular , Potenciales Evocados/efectos de los fármacos , Humanos , Neuronas Aferentes/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteína Quinasa C/metabolismo , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes/agonistas , Proteínas Recombinantes/antagonistas & inhibidores , Fármacos del Sistema Sensorial/farmacología , Canal Catiónico TRPA1 , Canales Catiónicos TRPC , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismoRESUMEN
Inhibition of the pituitary adenylate cyclase 1 receptor (PAC1R) is a novel mechanism that could be used for abortive treatment of acute migraine. Our research began with comparative analysis of known PAC1R ligand scaffolds, PACAP38 and Maxadilan, which resulted in the selection of des(24-42) Maxadilan, 6, as a starting point. C-terminal modifications of 6 improved the peptide metabolic stability in vitro and in vivo. SAR investigations identified synergistic combinations of amino acid replacements that significantly increased the in vitro PAC1R inhibitory activity of the analogs to the pM IC90 range. Our modifications further enabled deletion of up to six residues without impacting potency, thus improving peptide ligand binding efficiency. Analogs 17 and 18 exhibited robust in vivo efficacy in the rat Maxadilan-induced increase in blood flow (MIIBF) pharmacodynamic model at 0.3 mg/kg subcutaneous dosing. The first cocrystal structure of a PAC1R antagonist peptide (18) with PAC1R extracellular domain is reported.
Asunto(s)
Circulación Sanguínea/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/antagonistas & inhibidores , Animales , Humanos , Proteínas de Insectos/farmacología , Masculino , Ratones , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/metabolismo , Trastornos Migrañosos/fisiopatología , Simulación del Acoplamiento Molecular , Péptidos/farmacocinética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/química , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Vasodilatadores/farmacologíaRESUMEN
The vanilloid receptor TRPV1 is a homotetrameric, non-selective cation channel abundantly expressed in the nociceptors (c-fibers). TRPV1 is considered as a highly validated pain target because, i) its agonists such as capsaicin cause desensitization of TRPV1 channels that relieves pain behaviors in preclinical species, and ii) its antagonists relieve pain behaviors in rodent models of inflammation, osteoarthritis, and cancer. Hence, both agonists and antagonists of TRPV1 are being evaluated as potential analgesics in clinical trials. Clinical trial results of TRPV1 agonists such as resiniferatoxin in interstitial cystitis, NGX 4010 in post-herpetic neuralgia, and 4975 (Adlea) in osteoarthritis, bunionectomy, and Morton's neuroma have been reported. Similarly, clinical trial results of TRPV1 antagonists such as SB-705498 and AMG 517 have also been published recently. Overall, some molecules (e.g., capsaicin) demonstrated potential analgesia in certain conditions (postsurgical pain, postherpetic neuralgia, pain in diabetic neuropathy, osteoarthritis, bunionectomy, and Morton's neuroma), whereas others fell out of the clinic due to on-target liabilities or failed to demonstrate efficacy. This review summarizes recent advances and setbacks of TRPV1 agonists and antagonists in the clinic and predicts future directions.
Asunto(s)
Analgésicos/farmacología , Sistema Nervioso/efectos de los fármacos , Nociceptores/efectos de los fármacos , Dolor/tratamiento farmacológico , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/antagonistas & inhibidores , Analgésicos/química , Animales , Capsaicina/farmacología , Ensayos Clínicos como Asunto/estadística & datos numéricos , Evaluación Preclínica de Medicamentos/métodos , Humanos , Sistema Nervioso/metabolismo , Sistema Nervioso/fisiopatología , Neurofarmacología/métodos , Neurofarmacología/tendencias , Nociceptores/metabolismo , Dolor/metabolismo , Dolor/fisiopatología , Canales Catiónicos TRPV/metabolismoRESUMEN
Agonists of the transient receptor potential vanilloid type 1 (TRPV1), such as capsaicin, cause pain and a drop in body temperature (hypothermia). Conversely, antagonists of TRPV1 block pain behaviors in rodent models of inflammation, osteoarthritis and cancer. Efforts that evaluate TRPV1 antagonists in on-target challenge models have uncovered that TRPV1 blockade elicits an increase in body temperature (hyperthermia) from rodents to primates, revealing the intimate relationship between the role of TRPV1 in pain and body-temperature maintenance. This evolutionarily conserved function of TRPV1 in body-temperature maintenance became a hurdle for clinical development of one antagonist, AMG 517. However, several other TRPV1 antagonists are currently being evaluated in the clinic and soon-to-be-published results should shed light on the potential of managing antagonist-induced hyperthermia while developing them as therapeutics.
Asunto(s)
Regulación de la Temperatura Corporal/efectos de los fármacos , Canales Catiónicos TRPV/efectos de los fármacos , Canales Catiónicos TRPV/genética , Animales , Barrera Hematoencefálica/fisiología , Temperatura Corporal/efectos de los fármacos , Temperatura Corporal/fisiología , Humanos , Hipotermia/inducido químicamente , Hipotermia/fisiopatología , Canales Catiónicos TRPV/agonistasRESUMEN
Multiple genome-wide association studies have identified non-coding single-nucleotide variants (SNVs) near (e.g., rs10166942[C]) or within (rs17862920[T]) the TRPM8 gene that encodes a cold thermosensor is associated with reduced migraine risk. Furthermore, rs10166942[C]) and rs10166942[T]) are more prevalent in populations that reside in hotter and colder climates, respectively. Here we assessed whether these alleles affect TRPM8 expression in humans and human physiologic responses to cold challenge. Here we show that TRPM8 expression is decreased from the chromosome harboring the rs10166942[C] allele in the human dorsal root ganglia. Moreover, carriers of rs10166942[C] required significantly lower temperatures and longer duration of exposure to reach a cold pain threshold (CPTh), which correlated with decreased TRPM8 expression expected in the carriers. This study provides evidence for a genotype-dependent influence on cold pain sensation suggesting that carriers of the reduced migraine risk allele have reduced sensitivity to cold stimuli and that TRPM8 acts as a cold thermosensor and cold pain transducer in humans. Reduced TRPM8 expression and function underpins the migraine protection in carriers of rs10166942[C]; thus, the evaluation of TRPM8 antagonists as migraine therapeutics is warranted. Furthermore, these results provide mechanistic insights for evolutionary positive selection of rs10166942[T] allele in adaptation along latitudinal cline to colder climates.
Asunto(s)
Frío , Ganglios Espinales/metabolismo , Regulación de la Expresión Génica , Trastornos Migrañosos , Percepción del Dolor , Polimorfismo de Nucleótido Simple , Canales Catiónicos TRPM , Alelos , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Trastornos Migrañosos/genética , Trastornos Migrañosos/metabolismo , Canales Catiónicos TRPM/biosíntesis , Canales Catiónicos TRPM/genéticaRESUMEN
An involvement of the transient receptor potential vanilloid (TRPV) 1 channel in the regulation of body temperature (T(b)) has not been established decisively. To provide decisive evidence for such an involvement and determine its mechanisms were the aims of the present study. We synthesized a new TRPV1 antagonist, AMG0347 [(E)-N-(7-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl)-3-(2-(piperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)acrylamide], and characterized it in vitro. We then found that this drug is the most potent TRPV1 antagonist known to increase T(b) of rats and mice and showed (by using knock-out mice) that the entire hyperthermic effect of AMG0347 is TRPV1 dependent. AMG0347-induced hyperthermia was brought about by one or both of the two major autonomic cold-defense effector mechanisms (tail-skin vasoconstriction and/or thermogenesis), but it did not involve warmth-seeking behavior. The magnitude of the hyperthermic response depended on neither T(b) nor tail-skin temperature at the time of AMG0347 administration, thus indicating that AMG0347-induced hyperthermia results from blockade of tonic TRPV1 activation by nonthermal factors. AMG0347 was no more effective in causing hyperthermia when administered into the brain (intracerebroventricularly) or spinal cord (intrathecally) than when given systemically (intravenously), which indicates a peripheral site of action. We then established that localized intra-abdominal desensitization of TRPV1 channels with intraperitoneal resiniferatoxin blocks the T(b) response to systemic AMG0347; the extent of desensitization was determined by using a comprehensive battery of functional tests. We conclude that tonic activation of TRPV1 channels in the abdominal viscera by yet unidentified nonthermal factors inhibits skin vasoconstriction and thermogenesis, thus having a suppressive effect on T(b).
Asunto(s)
Cavidad Abdominal , Sistema Nervioso Autónomo/fisiología , Regulación de la Temperatura Corporal/fisiología , Frío , Canales Catiónicos TRPV/fisiología , Vísceras/metabolismo , Acrilamidas/síntesis química , Acrilamidas/farmacología , Animales , Temperatura Corporal/efectos de los fármacos , Células CHO , Cricetinae , Cricetulus , Diterpenos/farmacología , Fiebre/inducido químicamente , Fiebre/fisiopatología , Humanos , Ratones , Ratones Noqueados , Piridinas/síntesis química , Piridinas/farmacología , Ratas , Piel/irrigación sanguínea , Temperatura Cutánea , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/deficiencia , Termogénesis/fisiología , Vasoconstricción/fisiología , Vísceras/efectos de los fármacosRESUMEN
The vanilloid receptor TRPV1 (transient receptor potential vanilloid 1) is a cation channel that serves as a polymodal detector of pain-producing stimuli such as capsaicin, protons (pH <5.7), and heat. TRPV1 antagonists block pain behaviors in rodent models of inflammatory, neuropathic, and cancer pain, suggesting their utility as analgesics. Here, we report that TRPV1 antagonists representing various chemotypes cause an increase in body temperature (hyperthermia), identifying a potential issue for their clinical development. Peripheral restriction of antagonists did not eliminate hyperthermia, suggesting that the site of action is predominantly outside of the blood-brain barrier. Antagonists that are ineffective against proton activation also caused hyperthermia, indicating that blocking capsaicin and heat activation of TRPV1 is sufficient to produce hyperthermia. All TRPV1 antagonists evaluated here caused hyperthermia, suggesting that TRPV1 is tonically activated in vivo and that TRPV1 antagonism and hyperthermia are not separable. TRPV1 antagonists caused hyperthermia in multiple species (rats, dogs, and monkeys), demonstrating that TRPV1 function in thermoregulation is conserved from rodents to primates. Together, these results indicate that tonic TRPV1 activation regulates body temperature.
Asunto(s)
Acrilamidas/farmacología , Regulación de la Temperatura Corporal/fisiología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Sulfonamidas/farmacología , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/fisiología , Tiourea/análogos & derivados , Animales , Benzotiazoles/farmacología , Barrera Hematoencefálica/metabolismo , Células CHO , Capsaicina , Células Cultivadas , Secuencia Conservada , Cricetinae , Cricetulus , Perros , Femenino , Fiebre/inducido químicamente , Fiebre/fisiopatología , Humanos , Hipotermia/inducido químicamente , Hipotermia/fisiopatología , Macaca fascicularis , Masculino , Quinoxalinas/farmacología , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie , Tiourea/farmacologíaRESUMEN
Antagonists of the vanilloid receptor TRPV1 (transient receptor potential vanilloid type 1) have been reported to produce antihyperalgesic effects in animal models of pain. These antagonists, however, also caused concomitant hyperthermia in rodents, dogs, monkeys, and humans. Antagonist-induced hyperthermia was not observed in TRPV1 knockout mice, suggesting that the hyperthermic effect is exclusively mediated through TRPV1. Since antagonist-induced hyperthermia is considered a hurdle for developing TRPV1 antagonists as therapeutics, we investigated the possibility of eliminating hyperthermia while maintaining antihyperalgesia. Here, we report four potent and selective TRPV1 modulators with unique in vitro pharmacology profiles (profiles A through D) and their respective effects on body temperature. We found that profile C modulator, (R,E)-N-(2-hydroxy-2,3-dihydro-1H-inden-4-yl)-3-(2-(piperidin-1-yl)-4-(trifluoromethyl)phenyl)acrylamide (AMG8562), blocks capsaicin activation of TRPV1, does not affect heat activation of TRPV1, potentiates pH 5 activation of TRPV1 in vitro, and does not cause hyperthermia in vivo in rats. We further profiled AMG8562 in an on-target (agonist) challenge model, rodent pain models, and tested for its side effects. We show that AMG8562 significantly blocks capsaicin-induced flinching behavior, produces statistically significant efficacy in complete Freund's adjuvant- and skin incision-induced thermal hyperalgesia, and acetic acid-induced writhing models, with no profound effects on locomotor activity. Based on the data shown here, we conclude that it is feasible to modulate TRPV1 in a manner that does not cause hyperthermia while maintaining efficacy in rodent pain models.