Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 13(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36766591

RESUMEN

Wilms' tumor, the most prevalent renal tumor in children, is known for its aggressive prognosis and recurrence. Treatment of Wilms' tumor is multimodal, including surgery, chemotherapy, and occasionally, radiation therapy. Preoperative chemotherapy is used routinely in European studies and in select indications in North American trials. The objective of this study was to build a novel computer-aided prediction system for preoperative chemotherapy response in Wilms' tumors. A total of 63 patients (age range: 6 months-14 years) were included in this study, after receiving their guardians' informed consent. We incorporated contrast-enhanced computed tomography imaging to extract the texture, shape, and functionality-based features from Wilms' tumors before chemotherapy. The proposed system consists of six steps: (i) delineate the tumors' images across the three contrast phases; (ii) characterize the texture of the tumors using first- and second-order textural features; (iii) extract the shape features by applying a parametric spherical harmonics model, sphericity, and elongation; (iv) capture the intensity changes across the contrast phases to describe the tumors' functionality; (v) apply features fusion based on the extracted features; and (vi) determine the final prediction as responsive or non-responsive via a tuned support vector machine classifier. The system achieved an overall accuracy of 95.24%, with 95.65% sensitivity and 94.12% specificity. Using the support vector machine along with the integrated features led to superior results compared with other classification models. This study integrates novel imaging markers with a machine learning classification model to make early predictions about how a Wilms' tumor will respond to preoperative chemotherapy. This can lead to personalized management plans for Wilms' tumors.

2.
Cancers (Basel) ; 15(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37345172

RESUMEN

Globally, renal cancer (RC) is the 10th most common cancer among men and women. The new era of artificial intelligence (AI) and radiomics have allowed the development of AI-based computer-aided diagnostic/prediction (AI-based CAD/CAP) systems, which have shown promise for the diagnosis of RC (i.e., subtyping, grading, and staging) and prediction of clinical outcomes at an early stage. This will absolutely help reduce diagnosis time, enhance diagnostic abilities, reduce invasiveness, and provide guidance for appropriate management procedures to avoid the burden of unresponsive treatment plans. This survey mainly has three primary aims. The first aim is to highlight the most recent technical diagnostic studies developed in the last decade, with their findings and limitations, that have taken the advantages of AI and radiomic markers derived from either computed tomography (CT) or magnetic resonance (MR) images to develop AI-based CAD systems for accurate diagnosis of renal tumors at an early stage. The second aim is to highlight the few studies that have utilized AI and radiomic markers, with their findings and limitations, to predict patients' clinical outcome/treatment response, including possible recurrence after treatment, overall survival, and progression-free survival in patients with renal tumors. The promising findings of the aforementioned studies motivated us to highlight the optimal AI-based radiomic makers that are correlated with the diagnosis of renal tumors and prediction/assessment of patients' clinical outcomes. Finally, we conclude with a discussion and possible future avenues for improving diagnostic and treatment prediction performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA