Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Environ Sci Technol ; 56(13): 9641-9650, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35737736

RESUMEN

Free ammonia (FA) has been recently demonstrated as the primary stress factor suppressing microalgal activities in high-ammonium wastewater. However, its inhibition mechanism and microalgal self-adaptive regulations remain unknown. This study revealed an initial inhibition and subsequent self-adaptation of a wastewater-indigenous Chlorella sp. exposed to FA shock. Mutual physiological and transcriptome analysis indicated that genetic information processing, photosynthesis, and nutrient metabolism were the most influenced metabolic processes. Specifically, for the inhibition behavior, DNA damage was indicated by the significantly up-regulated related genes, leading to the activation of cell cycle checkpoints, programmed apoptosis, and suppressed microalgal growth; FA shock inhibited the photosynthetic activities including both light and dark reactions and photoprotection through non-photochemical quenching; ammonium uptake was also suppressed with the inhibited glutamine synthetase/glutamine α-oxoglutarate aminotransferase cycle and the inactivated glutamate dehydrogenase pathway. With respect to microalgal self-adaptation, DNA damage possibly enhanced overall cell viability through reprogramming the cell fate; recovered nutrient uptake provided substances for self-adaptation activities including amino acid biosynthesis, energy production and storage, and genetic information processing; elevated light reactions further promoted self-adaptation through photodamage repair, photoprotection, and antioxidant systems. These findings enrich our knowledge of microalgal molecular responses to FA shock, facilitating the development of engineering optimization strategies for the microalgal wastewater bioremediation system.


Asunto(s)
Compuestos de Amonio , Chlorella , Microalgas , Amoníaco/metabolismo , Compuestos de Amonio/metabolismo , Biomasa , Microalgas/metabolismo , Aguas Residuales
2.
Environ Sci Technol ; 56(1): 585-594, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34933554

RESUMEN

Microalgae-based bioremediation presents an alternative to traditional biological wastewater treatment. However, its efficiency is still challenging due to low microalgal activities and growth rate in wastewater. Iron plays an important role in microbial metabolism and is effective to stimulate microbial growth. In this study, a novel approach was proposed to simultaneously promote microalgal activity and nutrient uptake from wastewater using nanoscale zerovalent iron (nZVI), and the underlying molecular mechanism was explored. Compared to the control, 0.05 mg/L of nZVI significantly enhanced biomass production by 113.3% as well as NH4+-N and PO43--P uptake rates by 32.2% and 75.0%, respectively. These observations were attributed to the enhanced metabolic pathways and intracellular regulations. Specifically, nZVI alleviated the cellular oxidative stress via decreased peroxisome biogenesis as indicated by reduced reactive oxygen species, enzymes, and genes involved. nZVI promoted ammonium assimilation, phosphate metabolism, carbon fixation, and energy generation. Moreover, nZVI regulated the biosynthesis and conversions of intracellular biocomposition, leading to increased carotenoid, carbohydrate, and lipid productions and decreased protein and fatty acid yields. The above metabolisms were supported by the regulations of differentially expressed genes involved. This study provided an nZVI-based approach and molecular mechanism for enhancing microalgal activities and nutrient uptake from wastewater.


Asunto(s)
Microalgas , Aguas Residuales , Biomasa , Hierro , Nutrientes
3.
J Environ Manage ; 307: 114499, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35065378

RESUMEN

Nitrite (NO2-) oxidation is an essential step of biological nitrogen cycling in natural ecosystems, and is performed by chemolithoautotrophic nitrite-oxidizing bacteria (NOB). Although Nitrobacter and Nitrospira are regarded as representative NOB in nitrification systems, little attention has focused on kinetic characterisation of the coexistence of Nitrobacter and Nitrospira at various pH values. Here, we evaluate the substrate kinetics, biological mechanism and microbial community dynamics of an enrichment culture including Nitrobacter (17.5 ± 0.9%) and Nitrospira (7.2 ± 0.6%) in response to various pH constrains. Evaluation of the Monod equation at pH 6.0, 6.5, 7.0, 7.5, 8.0 and 8.5 showed that the enrichment had maximum rate (rmax) and maximum substrate affinity (KS) for NO2- oxidation at pH 7.0, which was also supported by the largest absolute abundance of Nitrobacter nxrA (5.26 × 107 copies per g wet sludge) and Nitrospira nxrB (1.975 × 109 copies per g wet sludge) genes. Moreover, the predominant species for the Nitrobacter-like nxrA were N. vulgaris and N. winogradskyi, while for the Nitrospira-like nxrB, the predominant species were N. japonica, N. calida and Ca. N. bockiana. Furthermore, the rmax was strongly and positively correlated with the abundance of the Nitrobacter nxrA or Nitrospira nxrB genes, or N. winogradsk, whereas KS was positively correlated with the abundance of Nitrobacter nxrA or Nitrospira nxrB genes or Ca. N. bockiana. Overall, this study could improve basis kinetic parameters and biological mechanism of NO2- oxidation in WWTPs.


Asunto(s)
Ecosistema , Nitrobacter , Bacterias , Reactores Biológicos , Concentración de Iones de Hidrógeno , Cinética , Nitrificación , Nitritos , Nitrobacter/genética , Oxidación-Reducción
4.
Environ Sci Technol ; 55(19): 13297-13305, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34529402

RESUMEN

Nitritation facilitates the application of anaerobic ammonium oxidation (Anammox)-based processes for cost-efficient nitrogen removal from wastewater. This study proposed light irradiation as a novel strategy to rapidly start up nitritation by stimulating both the activities and growth of ammonia-oxidizing bacteria (AOB) while suppressing that of nitrite-oxidizing bacteria (NOB). Batch assays and kinetic model jointly suggested that AOB activity presented an initial increase followed by a decline while NOB decreased continuously throughout the light energy densities applied. Under optimal light energy densities (0.03-0.08 kJ/mg VSS), the highest nitrite accumulation ratio of 70.0% was achieved in sequencing batch reactors with both mainstream online and sidestream offline light treatments when treating real or synthetic municipal wastewater. Light irradiation induced different responses of AOB and NOB, leading to microbial structure optimization. Specifically, the expression of nxrB was downregulated, while the expression of amoA was upregulated under appropriate light irradiation. Moreover, although Nitrosomonas as typical AOB disappeared, the family Nitrosomonadaceae was doubled with enrichment of Ellin6067 and another four Nitrosomonadaceae genera that were only identified in light-treated reactors, thus ensuring AOB predominance and stable nitritation. These findings offer a new approach to rapidly establishing nitritation using light irradiation in municipal wastewater, especially for nitritation/microalgae system.


Asunto(s)
Amoníaco , Compuestos de Amonio , Bacterias/genética , Reactores Biológicos , Expresión Génica , Nitritos , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado
5.
Environ Sci Technol ; 55(17): 11916-11924, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34424674

RESUMEN

The mechanism of self-flocculation remains unclear, partially impeding its efficiency enhancement and commercial application of microalgae-based municipal wastewater (MW) bioremediation technology. This study revealed the contributions of exoproteins [PN, proteins in extracellular polymeric substances (EPS)] to the separation of indigenous microalgae from treated MW. Compared to the low light intensity group, the high light intensity (HL) group produced Chlorella sp. with 4.3-fold higher self-flocculation efficiencies (SE). This was attributed to the enriched biological functions and positional rearrangement of increased PN within 2.9-fold higher EPS. Specifically, a total of 75 PN was over-expressed in the HL group among the 129 PN identified through label-free proteomics. The algal cell-adhesion molecules (Algal-CAMs) and metal-ion-binding PN were demonstrated as two dominant contributors promoting cell adhesion and bridging, through function prediction based on the contained domains. The modeled 3D structure showed that Algal-CAMs presented less hydrophilic α-helix abundance and were distributed in the outermost position of the EPS matrix, further facilitating microalgal separation. Moreover, the 10.1% lower hydrophily degree value, negative interfacial free energy (-19.5 mJ/m2), and 6.8-fold lower energy barrier between cells also supported the observed higher SE. This finding is expected to further fill the knowledge gap of the role of PN in microalgal self-flocculation and promote the development of biomass recovery from the microalgae-wastewater system.


Asunto(s)
Chlorella , Microalgas , Biomasa , Floculación , Aguas Residuales
6.
Environ Res ; 200: 111737, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34302827

RESUMEN

During nitrification, the varieties of microbial structures, metabolic pathways and functional profiles in four parallel laboratory-scale sequencing batch reactors (SBRs) with 0.5, 5, 10 and 15 mg/L of free ammonia (FA) concentrations were analyzed by high-throughput sequencing of the 16S rRNA gene. The SBRs were named S0.5, S5, S10 and S15, respectively. Ammonia removal via the nitrate pathway was achieved in S0.5 and S5 throughout the whole experimental period, while ammonia removal via the nitrite pathway was established in S10 and S15 after 89 and 146 day, respectively. The key finding of this study is that both the microbial diversity and richness were significantly affected (p < 0.05) by the FA concentration at different taxonomic levels. The most dominant taxa of S5, S10 and S15 were same, and mainly included Thauera while S0.5 was mainly composed of Zoogloea. Linear discriminant analysis (LDA) effect size (LEfSe) analysis was used to identify unique biomarkers in SBR activated sludge (AS) sample. The functional genera and enzyme in the four SBRs are similar but different in abundance and they are responsible for the removal of organics and nitrogen. Moreover, metabolic pathways are similar by PICRUSt analysis. The relative proportions of pathway-specific genes involved in some metabolic pathways differed to some extent. The ammonia oxidation rate was positively linked to Nitrosomonas and amo (both Spearman correlation coefficients (ρ) = 0.777) while the nitrite oxidation rate was positively linked to Nitrospira (ρ = 0.777) by co-occurrence network analysis. This work deciphered the response of microbial characteristics to different FA constraints in AS process and could provide helpful information for revealing the biological mechanism of FA inhibition on nitrogen removal.


Asunto(s)
Nitrificación , Aguas del Alcantarillado , Amoníaco , Reactores Biológicos , ARN Ribosómico 16S/genética
7.
Environ Sci Technol ; 51(6): 3558-3566, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28221783

RESUMEN

Compared to microalgae, macroalgae are larger in size, thereby imposing lower separation and drying costs. This study demonstrates the feasibility of cultivating macroalgae Chaetomorpha linum in different types of municipal wastewaters, their ability to remove nutrient and their biomass composition for downstream biofuel production. Screening experiments indicated that C. linum grew well on primary (PW) and secondary wastewaters (SW), as well as centrate wastewater (CW) diluted to less than 20%. In a subsequent experiment, a step feeding approach was found to significantly increase biomass productivity to 10.7 ± 0.2 g AFDW·m-2·d-1 (p < 0.001), a 26.5% improvement in comparison to the control with single feeding, when grown on 10-CW; meanwhile, nitrogen and phosphorus removal efficiencies rose to 86.8 ± 1.1% (p < 0.001) and 92.6 ± 0.2% (p < 0.001), respectively. The CO2-supplemented SW cultures (10.1 ± 0.4 g AFDW·m-2·d-1) were 1.20 times more productive than the corresponding controls without CO2 supplementation (p < 0.001); however, similar improvements were not observed in PW (p = 0.07) and 10-CW cultures (p = 0.07). Moreover, wastewater type and nutrient concentration influenced biomass composition (protein, carbohydrate and lipid). These findings indicate that the application of the macroalgae C. linum could represent an effective wastewater treatment alternative that could also provide a feedstock for downstream processing to biofuels.


Asunto(s)
Biomasa , Aguas Residuales , Biocombustibles , Lino , Microalgas , Nitrógeno , Algas Marinas
8.
Environ Sci Technol ; 50(14): 7896-903, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27314988

RESUMEN

There is a pressing need to develop efficient and sustainable approaches to harvesting microalgae for biofuel production and water treatment. CO2-switchable crystalline nanocellulose (CNC) modified with 1-(3-aminopropyl)imidazole (APIm) is proposed as a reversible coagulant for harvesting microalgae. Compared to native CNC, the positively charged APIm-modified CNC, which dispersed well in carbonated water, showed appreciable electrostatic interaction with negatively charged Chlorella vulgaris upon CO2-treatment. The gelation between the modified CNC, triggered by subsequent air sparging, can also enmesh adjacent microalgae and/or microalgae-modified CNC aggregates, thereby further enhancing harvesting efficiencies. Moreover, the surface charges and dispersion/gelation of APIm-modified CNC could be reversibly adjusted by alternatively sparging CO2/air. This CO2-switchability would make the reusability of redispersed CNC for further harvesting possible. After harvesting, the supernatant following sedimentation can be reused for microalgal cultivation without detrimental effects on cell growth. The use of this approach for harvesting microalgae presents an advantage to other current methods available because all materials involved, including the cellulose, CO2, and air, are natural and biocompatible without adverse effects on the downstream processing for biofuel production.


Asunto(s)
Biocombustibles , Microalgas , Biomasa , Chlorella vulgaris , Agua
9.
Environ Sci Technol ; 49(13): 8012-21, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-25941741

RESUMEN

Multifunctional reactor microbiomes can elongate short-chain carboxylic acids (SCCAs) to medium-chain carboxylic acids (MCCAs), such as n-caproic acid. However, it is unclear whether this microbiome biotechnology platform is stable enough during long operating periods to consistently produce MCCAs. During a period of 550 days, we improved the operating conditions of an anaerobic bioreactor for the conversion of complex yeast-fermentation beer from the corn kernel-to-ethanol industry into primarily n-caproic acid. We incorporated and improved in-line, membrane liquid-liquid extraction to prevent inhibition due to undissociated MCCAs at a pH of 5.5 and circumvented the addition of methanogenic inhibitors. The microbiome accomplished several functions, including hydrolysis and acidogenesis of complex organic compounds and sugars into SCCAs, subsequent chain elongation with undistilled ethanol in beer, and hydrogenotrophic methanogenesis. The methane yield was 2.40 ± 0.52% based on COD and was limited by the availability of carbon dioxide. We achieved an average n-caproate production rate of 3.38 ± 0.42 g L(-1) d(-1) (7.52 ± 0.94 g COD L(-1) d(-1)) with an n-caproate yield of 70.3 ± 8.81% and an n-caproate/ethanol ratio of 1.19 ± 0.15 based on COD for a period of ∼55 days. The maximum production rate was achieved by increasing the organic loading rates in tandem with elevating the capacity of the extraction system and a change in the complex feedstock batch.


Asunto(s)
Reactores Biológicos , Biotecnología/métodos , Caproatos/metabolismo , Cerveza/microbiología , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos/microbiología , Biotecnología/instrumentación , Etanol/metabolismo , Fermentación , Hidrólisis , Extracción Líquido-Líquido , Metano/análisis , Metano/metabolismo , Levaduras/metabolismo
10.
Environ Sci Technol ; 49(2): 1190-6, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25486124

RESUMEN

Magnetophoretic separation is a promising and sustainable technology for rapid algal separation or removal from water. This work demonstrated the application of magnetic magnetite nanoparticles (MNPs) coated with a cationic polymer, polyethylenimine (PEI), toward the separation of Scenedesmus dimorphus from the medium broth. The influences of surface coating, UV irradiation, and magnetic field on the magnetophoretic separation were systematically examined. After PEI coating, zeta potential of MNPs shifted from −7.9 ± 2.0 to +39.0 ± 3.1 mV at a pH of 7.0, which improved MNPs-algae interaction and helped reduce the dose demand of MNPs (e.g., from 0.2 to 0.1 g·g(­1) while the harvesting efficiency (HE) of over 80% remained unchanged). The extended Derjaguin­Landau­Verwey­Overbeek theory predicted a strong attractive force between PEI-coated MNPs and algae, which supported the improved algal harvesting. Moreover, the HE was greater under the UV365 irradiation than that under the UV254, and increased with the irradiation intensity. Continuous application of the external magnetic field at high strength remarkably improved the algal harvesting. Finally, the reuse of MNPs for multiple cycles of algal harvesting was studied, which aimed at increasing the sustainability and lowering the cost.


Asunto(s)
Campos Magnéticos , Nanopartículas de Magnetita/análisis , Polietileneimina/análisis , Scenedesmus/aislamiento & purificación , Rayos Ultravioleta , Biocombustibles , Cationes , Coloides/química , Magnetismo , Microscopía Electrónica de Transmisión , Propiedades de Superficie , Temperatura , Difracción de Rayos X
11.
Water Sci Technol ; 70(10): 1594-601, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25429446

RESUMEN

This study evaluated the performance of a full-scale upgrade of an existing wastewater treatment plant (WWTP) with the intermittent cyclic extended aeration system (ICEAS), located in Qingdao, China. The ICEAS system was not able to meet effluent standards; therefore, a series of modifications and control strategies were applied as follows: (1) floating plastic carriers were added to the tank to aid biofilm formation; (2) operation parameters such as mixing and aeration time, feeding rate, and settling time were adjusted and controlled with a real-time control system; (3) a sludge return system and submersible water impellers were added; (4) the aeration system was also improved to circulate carriers and prevent clogging. The modified ICEAS system exhibited efficient organic and nutrient removal, with high removal efficiencies of chemical oxygen demand (89.57 ± 4.10%), NH4(+)-N (95.46 ± 3.80%), and total phosphorus (91.90 ± 4.36%). Moreover, an annual power reduction of 1.04 × 10(7) kW·h was realized as a result of these modifications.


Asunto(s)
Biopelículas , Aguas del Alcantarillado/análisis , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos/normas , China , Fósforo/análisis , Eliminación de Residuos Líquidos/economía , Eliminación de Residuos Líquidos/instrumentación
12.
Water Res ; 262: 122103, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39032333

RESUMEN

Nano zero-valent iron (NZVI) has been shown to effectively enhance the chain elongation (CE) process, addressing the issue of limited yield of medium-chain carboxylic acids (MCCA) from organic wastewater. However, the specific impact of NZVI on the metabolism of CE bacteria (CEB) is not well understood. In this study, it was aimed to investigate the mechanism by which an optimal concentration of NZVI influences CE metabolism, particularly in relation to ethanol oxidation, electron transfer, and MCCA synthesis. This was achieved through single-factor influence experiments and metagenomic analysis. The results showed that the addition of 1 g/gVSS NZVI achieved the highest MCCA yield (n-caproic acid + n-octanoic acid) at 2.02 g COD/L, which was 4.9 times higher than the control. This improvement in MCCA production induced by NZVI was attributed to several factors. Firstly, NZVI facilitated the oxidation of acetaldehyde, leading to its reduced accumulation in the system (from 18.4 % to 5.8 %), due to the optimized chemical environment created by NZVI corrosion, including near-neutral pH and a more reductive oxidation-reduction potential (ORP). Additionally, the inherent conductivity property of NZVI and the additional Fe ions released during corrosion improved the electron transfer efficiency between CEB. Lastly, both the composition of microbial communities and the abundance of unique enzyme genes confirmed the selective stimulation of NZVI on the reverse ß-oxidation (RBO) pathway. These findings provide valuable insights into the role of NZVI in CEB metabolism and its potential application for enhancing MCCA production in CE bioreactors.


Asunto(s)
Acetaldehído , Ácidos Carboxílicos , Hierro , Oxidación-Reducción , Hierro/química , Hierro/metabolismo , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Acetaldehído/química , Transporte de Electrón
13.
Bioresour Technol ; 406: 131055, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944316

RESUMEN

Indigenous microalgae-bacteria consortium (IMBC) offers significant advantages for swine wastewater (SW) treatment including enhanced adaptability and resource recovery. In this review, the approaches for enriching IMBC both in situ and ex situ were comprehensively described, followed by symbiotic mechanisms for IMBC which involve metabolic cross-feeding and signal transmission. Strategies for enhancing treatment efficiencies of SW-originated IMBC were then introduced, including improving SW quality, optimizing system operating conditions, and adjusting microbial activities. Recommendations for maximizing treatment efficiencies were particularly proposed using a decision tree approach. Moreover, removal/recovery mechanisms for typical pollutants in SW using IMBC were critically discussed. Ultimately, a technical route termed SW-IMBC-Crop-Pig was proposed, to achieve a closed-loop economy for pig farms by integrating SW treatment with crop cultivation. This review provides a deeper understanding of the mechanism and strategies for IMBC's resource recovery from SW.


Asunto(s)
Microalgas , Aguas Residuales , Animales , Aguas Residuales/microbiología , Microalgas/metabolismo , Porcinos , Bacterias/metabolismo , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos , Consorcios Microbianos/fisiología , Biodegradación Ambiental
14.
Sci Total Environ ; 913: 169728, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38160812

RESUMEN

Improper treatment of rural black wastewater (RBW) presents substantial challenges, including the wastage of resource, environmental contamination, and economic consequences. This study proposed an integrated process for RBW treatment, consisting of coagulation/flocculation (C/F) pretreatment and subsequent inoculation of indigenous microalgal-bacterial consortium (IMBC) for nitrogen recovery, namely C/F-IMBC process. Specifically, the optimal C/F conditions (polyaluminium chloride of 4 g/l, polyacrylamide of 50 mg/l, and pH of 6) were determined through a series of single-factor experiments, considering CN, turbidity, and dissolved organic matter (DOM) removal, economic cost, and potential influence on the water environment. Compared to the sole IMBC system for RBW treatment, the proposed C/F-IMBC process exhibited a remarkable 1.23-fold increase in microalgal growth and a substantial 17.6-22.6 % boost in nitrogen recovery. The altered RBW characteristic induced by C/F pretreatment was supposed to be responsible for the improved system performance. In particular, the abundance of DOM was decreased and its composition was simplified after C/F pretreatment, based on the analysis for excitation-emission matrices with parallel factor and gas chromatography-mass spectrometry, thus eliminating the potential impacts of toxic DOM components (e.g., Bis(2-ethylhexyl) phthalate) on IMBC activity. It should also be noted that C/F pretreatment modified microbial community structure as well, thereby regulating the expression of nitrogen-related genes and enhancing the system nitrogen recovery capacity. For instance, the functional Cyanobacteria responsible for nutrient recovery was enriched by 1.95-fold and genes involved in the assimilatory nitrate reduction to ammonia pathway were increased by 1.52-fold. These fundamental findings are expected to offer insights into the improvement of DOM removal and nitrogen recovery for IMBC-based wastewater treatment system, and provide valuable guidance for the development of sustainable on-site RBW treatment technologies.


Asunto(s)
Microalgas , Aguas Residuales , Floculación , Cromatografía de Gases y Espectrometría de Masas , Nitrógeno/análisis
15.
Bioresour Technol ; 406: 130997, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38897550

RESUMEN

Stability of integrated fixed-film indigenous microalgal-bacterial consortium (IF-IMBC) requires further investigation. This study focused on the influence of short-term stagnation (STS), caused by influent variations or equipment maintenance, on IF-IMBC. Results showed that the IF-IMBC system experienced initial inhibition followed by subsequent recovery during STS treatment. Enhanced organics utilization was believed to contribute to system recovery. It is proposed that the attached IMBC possessed greater stress resistance. On the one hand, a higher increase in bacteria potentially participating in organic degradation was observed. Moreover, the dominant eukaryotic species significantly decreased in suspended IMBC while its abundance remained stable in the attached state. On the other hand, increased abundance for most functional enzymes was primarily observed in the attached bacteria. This fundamental research aims to bridge the knowledge gap regarding the response of IMBC to variations in operational conditions.


Asunto(s)
Bacterias , Microalgas , Consorcios Microbianos , Bacterias/metabolismo , Consorcios Microbianos/fisiología , Estrés Fisiológico , Reactores Biológicos
16.
J Hazard Mater ; 463: 132891, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-37939560

RESUMEN

Microalgae-based bioremediation is likely to be challenged by the microplastics (MPs) in wastewater induced by the widely use of surgical masks (SMs) during COVID-19. However, such toxic impact was generally evaluated under high exposure concentrations of MPs, which was not in agreement with the actual wastewater environments. Therefore, this study investigated the microalgal cellular responses to the surgical mask exudates (SMEs) in wastewater and explored the underlying inhibitory mechanism from the molecular perspective. Specifically, 390 items/L SMEs (including 200 items/L MPs which was the actual MP level in wastewater) significantly inhibited nutrient uptake and photosynthetic activities interrupted peroxisome biogenesis and induced oxidative stress which destroyed the structure of cell membrane. Moreover, the SMEs exposure also affected carbon fixation pathways, suppressed ABC transporters while promoted oxidative phosphorylation processes for the ATP accumulation These comprehensive processes led to an 8.5% reduced microalgae growth and variations of cellular biocomponents including lipid, carbohydrate, and protein. The increased carotenoids and consumed unsaturated fatty acid were considered to alleviate the SMEs-induced stress, and the enhanced EPS secretion facilitated the homogeneous aggregation. These findings will enhance current understandings of the SMEs effects in wastewater on microalgae and further improve the practical relevance of microalgae wastewater bioremediation technology.


Asunto(s)
Chlorella , Microalgas , Aguas Residuales , Chlorella/metabolismo , Máscaras , Plásticos/metabolismo , Fotosíntesis , Microalgas/metabolismo , Biomasa
17.
Water Res ; 239: 120029, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37182308

RESUMEN

Microalgae-bacteria consortium (MBC) provides an alternative to sustainable treatment of human toilet wastewater (TWW) and resource recovery. This study compared the conventional activated sludge system and wastewater indigenous MBC system (IMBC) for nitrogen removal in TWW through the coupled partial nitrification (PN) and nitrite-type denitrification process. PN was firstly established by alternating FA and FNA. Subsequently, the successful PN maintenance with the nitrite accumulation rate ranging between 90.1-95.3% was achieved using two strategies: light irradiation with the appropriate specific light energy density at 0.0188-0.0598 kJ/mg VSS and the timely nitrite-type denitrification with the algae-secreted organics as the carbon source, eventually resulting in the nitrite accumulation rate ranging between 90.1-95.3%. In the IMBC-PN system, bacterial metabolism contributed to 91.5% of nitrogen removal and the rest was through microalgal assimilation. This study offers a sustainable hybrid IMBC-PN process for high NH4+-N strength wastewater treatment (e.g., TWW), which theoretically saves 23.5% aeration and 34.2% carbon source as well as reduces 17.0% sludge production.


Asunto(s)
Aparatos Sanitarios , Microalgas , Humanos , Aguas Residuales , Nitrificación , Aguas del Alcantarillado/microbiología , Desnitrificación , Nitritos/metabolismo , Microalgas/metabolismo , Reactores Biológicos/microbiología , Oxidación-Reducción , Bacterias/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo
18.
Water Res ; 230: 119527, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36580800

RESUMEN

Production of medium-chain carboxylic acids (MCCAs) by chain elongation (CE) presents a competitive alternative to conventional products of methane in anaerobic digestion treating organic waste streams, considering energy recovery, economic, and environmental profits. However, the system stability and performance largely rely on the selective suppression of methanogens while stimulation of CE bacteria. Commercial inhibitors such as 2-bromoethanesulfonic sodium (BES) was shown to be effective, but controversial conclusions exist on its inhibition characteristics and the inhibition mechanism remains unclear. Therefore, this study systematically investigated the responses of methanogenesis in granular sludge to various BES levels, focusing on methane production, methanogenic pathway, dynamic populations, electron transport and energy metabolism. Results showed that compared with the control, 3.0 g/L BES was sufficient to induce a 72.9% reduced level on accumulative methane production by the end of 4 cycles (28 days), which was likely to be attributed to the significantly suppressed metabolic pathways and intracellular regulations. Specifically, BES suppressed the electron transport via unproper electron carriers and reduced electron amount as indicated by the decreased level of enzymes and genes involved such as coenzyme F420, CO dehydrogenase and NADH:ubiquinone reductase (H+-translocating). Moreover, BES regulated the intracellular energy metabolism, leading to the impeded ATP synthesis but enhanced ATP consumption as evidenced by the variations on the activity or abundance of acetate kinase, A1Ao-ATP synthase, nitrogenase and ATP citrate synthase. Additionally, BES enriched hydrogenotrophic methanogenesis over acetoclastic one as supported by variations on the archaeal community structures and regulations of differentially expressed genes involved. Moreover, BES also reduced the contents of both protein and carbohydrate in extracellular polymeric substances (EPS). This study is expected to enhance understanding of BES contribution to methanogenesis inhibition but MCCAs production in CE bioreactors.


Asunto(s)
Ácidos Alcanesulfónicos , Bacterias , Bacterias/metabolismo , Anaerobiosis , Aguas del Alcantarillado/química , Adenosina Trifosfato/metabolismo , Metano/metabolismo , Reactores Biológicos/microbiología
19.
Bioresour Technol ; 385: 129366, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37343803

RESUMEN

A bottleneck of microalgae-based techniques for wastewater bioremediation is activity inhibition of microalgae by toxic pollutants. The defense strategies of Chlorella sorokinana against toxic pyridine were studied. Results indicated that pyridine caused photoinhibition and reactive oxygen species overproduction in a concentration-dependent manner. The 50% inhibitory concentration of pyridine (147 mg L-1) destroyed C/N balance, disrupted multiple metabolic pathways of C. sorokinana. In response to pyridine stress, ascorbate peroxidase and catalase activities increased to scavenge reactive oxygen species under pyridine concentrations lower than 23 mg L-1. At higher pyridine concentrations, the activation of calcium signaling pathways and phytohormones represented the predominant defense response. Extracellular polymeric substances increased 3.6-fold in 147 mg L-1 group than control, which interacted with pyridine through hydrophobic and aromatic stacking to resist pyridine entering algal cells. Unraveling the intracellular and extracellular self-defense mechanisms of microalgae against pyridine stress facilitates the development of microalgal-based technology in wastewater bioremediation.


Asunto(s)
Chlorella , Microalgas , Chlorella/metabolismo , Aguas Residuales , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Piridinas/metabolismo , Microalgas/metabolismo , Biomasa
20.
J Hazard Mater ; 460: 132390, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659235

RESUMEN

Photosynthetic oxygenation in algal-bacterial symbiotic (ABS) system was mainly concerned to enhance contaminant biodegradation by developing an aerobic environment, while the role of nitrification-denitrification involved is often neglected. In this study, an algal-bacterial aggregates (ABA) system was developed with algae and activated sludge (PBR-1) to achieve simultaneous pyridine and nitrogen removal. In PBR-1, as high as 150 mg·L-1 pyridine could be completely removed at hydraulic residence time of 48 h. Besides, total nitrogen (TN) removal efficiency could be maintained above 80%. Nitrification-denitrification was verified as the crucial process for nitrogen removal, accounting for 79.3% of TN removal at 180 µmol·m-2·s-1. Moreover, simultaneous pyridine and nitrogen removal was enhanced through nitrification-denitrification co-metabolism in the ABA system. Integrated bioprocesses in PBR-1 including photosynthesis, pyridine biodegradation, carbon and nitrogen assimilation, and nitrification-denitrification, were revealed at metabolic and transcriptional levels. Fluorescence in situ hybridization analysis indicated that algae and aerobic species were located in the surface layer, while denitrifiers were situated in the inner layer. Microelectrode analysis confirmed the microenvironment of ABA with dissolved oxygen and pH gradients, which was beneficial for simultaneous pyridine and nitrogen removal. Mechanism of nitrification-denitrification involved in pyridine and nitrogen removal was finally elucidated under the scale of ABA.


Asunto(s)
Desnitrificación , Nitrificación , Hibridación Fluorescente in Situ , Piridinas , Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA