Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharm ; 21(4): 1691-1704, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38430187

RESUMEN

In the clinical application of freeze-dried highly concentrated omalizumab formulations, extensive visible bubbles (VBs) can be generated and remain for a long period of time in the reconstitution process, which greatly reduces the clinical use efficiency. It is necessary to understand the forming and breaking mechanism of VBs in the reconstitution process, which is a key factor for efficient and safe administration of biopharmaceutical injection. The effects of different thermal treatments on the volume of VBs and stability of omalizumab, mAb-1, and mAb-2 were investigated. The internal microvoids of the cake were characterized by scanning electron microscopy and mercury intrusion porosimetry. Electron paramagnetic resonance was applied to obtain the molecular mobility of the protein during annealing. A large number of VBs were generated in the reconstitution process of unannealed omalizumab and remained for a long period of time. When annealing steps were added, the volume of VBs was dramatically reduced. When annealed at an aggressive temperature (i.e., -6 °C), although the volume of VBs decreased, the aggregation and acidic species increased significantly. Thus, our observations highlight the importance of setting an additional annealing step with a suitable temperature, which contributes to reducing the VBs while maintaining the stability of the high concentration freeze-dried protein formulation.


Asunto(s)
Omalizumab , Proteínas , Temperatura , Liofilización , Estabilidad de Medicamentos
2.
Pharm Res ; 41(2): 321-334, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38291165

RESUMEN

PURPOSES: We previously reported an unexpected phenomenon that shaking stress could cause more protein degradation in freeze-dried monoclonal antibody (mAb) formulations than liquid ones (J Pharm Sci, 2022, 2134). The main purposes of the present study were to investigate the effects of shaking stress on protein degradation and sub-visible particle (SbVP) formation in freeze-dried mAb formulations, and to analyze the factors influencing protein degradation during production and transportation. METHODS: The aggregation behavior of mAb-X formulations during production and transportation was simulated by shaking at a rate of 300 rpm at 25°C for 24 h. The contents of particles and monomers were analyzed by micro-flow imaging, dynamic light scattering, size exclusion chromatography, and ultraviolet - visible (UV-Vis) spectroscopy to compare the protective effects of excipients on the aggregation of mAb-X. RESULTS: Shaking stress could cause protein degradation in freeze-dried mAb-X formulations, while surfactant, appropriate pH, polyol mannitol, and high protein concentration could impact SbVP generation. Water content had little effect on freeze-dried protein degradation during shaking, as far as the water content was controlled in the acceptable range as recommended by mainstream pharmacopoeias (i.e., less than 3%). CONCLUSIONS: Shaking stress can reduce the physical stability of freeze-dried mAb formulations, and the addition of surfactants, polyol mannitol, and a high protein concentration have protective effects against the degradation of model mAb formulations induced by shaking stress. The experimental results provide new insight for the development of freeze-dried mAb formulations.


Asunto(s)
Anticuerpos Monoclonales , Química Farmacéutica , Anticuerpos Monoclonales/química , Química Farmacéutica/métodos , Excipientes/química , Liofilización/métodos , Manitol , Agua , Estabilidad de Medicamentos
3.
J Pharm Sci ; 111(7): 2134-2138, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35257695

RESUMEN

Liquid biopharmaceuticals including monoclonal antibodies (mAbs) have been widely acknowledged to undergo various stresses during shipping/handling and long-term storage. Several mechanical stresses including shaking during shipping has been widely known to cause protein aggregation and sub-visible particle (SbVP) formation in liquid biopharmaceutical formulations. However, shaking-induced degradation of freeze-dried (FD) biopharmaceuticals has seldomly been reported in the literature and therefore this type of stress is widely overlooked in industry due to their presumed high stability, especially when the formulations and freeze-drying processes are fully optimized. In this Lessons Learned article, we report an interesting phenomenon in which the optimized FD biopharmaceutical formulations of three typical mAbs showed much degradation and SbVP formation under shaking stress compared with their liquid counterparts. This is a striking deviation to the notion that mAbs are generally more stable in the FD formulations than in the liquid ones. Therefore, shaking stress experiment should be considered a critical stress condition for early-stage selection of liquid versus FD mAb formulations.


Asunto(s)
Anticuerpos Monoclonales , Productos Biológicos , Química Farmacéutica , Composición de Medicamentos , Estabilidad de Medicamentos , Liofilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA