Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Proteome Res ; 18(4): 1679-1690, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30869898

RESUMEN

Ableson tyrosine kinase (ABL) plays essential roles in cell differentiation, division, adhesion, and stress response. However, fusion of the breakpoint cluster region (BCR) to ABL produces constitutive kinase activity that causes chronic myelogenous leukemia (CML). Small molecule tyrosine kinase inhibitors (TKIs) such as imatinib revolutionized the treatment of CML and other cancers, but acquired resistance to these inhibitors is rising. Thus, careful dissection of ABL signaling pathways is needed to find novel drug targets. Here we present a refined proteomic approach for elucidation of direct kinase substrates called kinase assay linked phosphoproteomics (KALIP). Our strategy integrates in vitro kinase assays at both the peptide and protein levels with quantitative tyrosine phosphoproteomics in response to treatment by multiple TKIs. Utilizing multiple TKIs permits elimination of off-target effects of these drugs, and overlapping the in vivo and in vitro data sets allows us to define a list of the most probable kinase substrates. Applying our approach produced a list of 60 ABL substrates, including novel and known proteins. We demonstrate that spleen tyrosine kinase (SYK) is a novel direct substrate of ABL, and we predict our proteomic strategy may facilitate identification of substrates in other cancers that have disrupted kinase signaling.


Asunto(s)
Fosfoproteínas , Proteínas Tirosina Quinasas , Proteoma , Proteómica/métodos , Cromatografía Liquida , Descubrimiento de Drogas , Humanos , Células K562 , Espectrometría de Masas , Fosfoproteínas/análisis , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/metabolismo , Proteoma/análisis , Proteoma/química , Proteoma/metabolismo , Transducción de Señal/fisiología
2.
J Biol Chem ; 290(46): 27803-15, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26429917

RESUMEN

Syk is a cytoplasmic kinase that serves multiple functions within the immune system to couple receptors for antigens and antigen-antibody complexes to adaptive and innate immune responses. Recent studies have identified additional roles for the kinase in cancer cells, where its expression can either promote or suppress tumor cell growth, depending on the context. Proteomic analyses of Syk-binding proteins identified several interacting partners also found to be recruited to stress granules. We show here that the treatment of cells with inducers of stress granule formation leads to the recruitment of Syk to these protein-RNA complexes. This recruitment requires the phosphorylation of Syk on tyrosine and results in the phosphorylation of proteins at or near the stress granule. Grb7 is identified as a Syk-binding protein involved in the recruitment of Syk to the stress granule. This recruitment promotes the formation of autophagosomes and the clearance of stress granules from the cell once the stress is relieved, enhancing the ability of cells to survive the stress stimulus.


Asunto(s)
Autofagia , Gránulos Citoplasmáticos/enzimología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Tirosina Quinasas/metabolismo , ARN/metabolismo , Estrés Fisiológico , Arsenitos/farmacología , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Células MCF-7 , Fosforilación , Transporte de Proteínas , Proteínas Tirosina Quinasas/genética , Compuestos de Sodio/farmacología , Quinasa Syk , Tirosina/genética , Tirosina/metabolismo
3.
Biochim Biophys Acta ; 1853(1): 254-63, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25447675

RESUMEN

SYK (spleen tyrosine kinase) is well-characterized in the immune system as an essential enzyme required for signaling through multiple classes of immune recognition receptors. As a modulator of tumorigenesis, SYK has a bit of a schizophrenic reputation, acting in some cells as a tumor promoter and in others as a tumor suppressor. In many hematopoietic malignancies, SYK provides an important survival function and its inhibition or silencing frequently leads to apoptosis. In cancers of non-immune cells, SYK provides a pro-survival signal, but can also suppress tumorigenesis by restricting epithelial-mesenchymal transition, enhancing cell-cell interactions and inhibiting migration.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Tirosina Quinasas/fisiología , Proteínas Supresoras de Tumor/fisiología , Empalme Alternativo , Animales , Carcinogénesis , Comunicación Celular , Supervivencia Celular , Transición Epitelial-Mesenquimal , Humanos , Receptores de Antígenos de Linfocitos B/fisiología , Transducción de Señal/fisiología , Quinasa Syk
4.
Biochemistry ; 54(1): 60-8, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24914616

RESUMEN

The Syk protein-tyrosine kinase, a well-characterized modulator of immune recognition receptor signaling, also plays important, but poorly characterized, roles in tumor progression, acting as an inhibitor of cellular motility and metastasis in highly invasive cancer cells. Multiharmonic atomic force microscopy (AFM) was used to map nanomechanical properties of live MDA-MB-231 breast cancer cells either lacking or expressing Syk. The expression of Syk dramatically altered the cellular topography, reduced cell height, increased elasticity, increased viscosity, and allowed visualization of a more substantial microtubule network. The microtubules of Syk-expressing cells were more stable to nocodazole-induced depolymerization and were more highly acetylated than those of Syk-deficient cells. Silencing of MAP1B, a major substrate for Syk in MDA-MB-231 cells, attenuated Syk-dependent microtubule stability and reversed much of the effect of Syk on cellular topography, stiffness, and viscosity. This study illustrates the use of multiharmonic AFM both to quantitatively map the local nanomechanical properties of living cells and to identify the underlying mechanisms by which these properties are modulated by signal transduction machinery.


Asunto(s)
Neoplasias de la Mama/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Microscopía de Fuerza Atómica/métodos , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/metabolismo , Nanotecnología/métodos , Proteínas Tirosina Quinasas/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Humanos , Microtúbulos/patología , Quinasa Syk
5.
Int J Mass Spectrom ; 377: 744-753, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25954137

RESUMEN

Tandem mass spectrometry (MS/MS) has enabled researchers to analyze complex biological samples since the original concept inception. It facilitates the identification and quantification of modifications within tens of thousands of proteins in a single large-scale proteomic experiment. Phosphorylation analysis, as one of the most common and important post-translational modifications, has particularly benefited from such progress in the field. Here we showcase the technique through in-depth analyses of B cell signaling based on quantitative phosphoproteomics. As a complement to the previously described PolyMAC-Ti (polymer-based metal ion affinity capture using titanium) reagent, we introduce here PolyMAC-Fe, which utilizes a different metal ion, Fe(III). An extensive comparison using the different available MS/MS fragmentations techniques was made between PolyMAC-Fe, PolyMAC-Ti and IMAC (immobilized metal ion affinity chromatography) reagents in terms of specificity, reproducibility and type of phosphopeptides being enriched. PolyMAC-Fe based chelation demonstrated good selectivity and unique specificity toward phosphopeptides, making it useful in specialized applications. We have combined PolyMAC-Ti and PolyMAC-Fe, along with SILAC-based quantitation and large-scale fractionation, for quantitative B cell phosphoproteomic analyses. The complementary approach allowed us to identify a larger percentage of multiply phosphorylated peptides than with PolyMAC-Ti alone. Overall, out of 13,794 unique phosphorylation sites identified, close to 20% were dependent on BCR signaling. These sites were further mapped to a variety of major signaling networks, offering more detailed information about the biochemistry of B cell receptor engagement.

6.
Mol Cell Proteomics ; 12(10): 2969-80, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23793017

RESUMEN

Protein kinases are implicated in multiple diseases such as cancer, diabetes, cardiovascular diseases, and central nervous system disorders. Identification of kinase substrates is critical to dissecting signaling pathways and to understanding disease pathologies. However, methods and techniques used to identify bona fide kinase substrates have remained elusive. Here we describe a proteomic strategy suitable for identifying kinase specificity and direct substrates in high throughput. This approach includes an in vitro kinase assay-based substrate screening and an endogenous kinase dependent phosphorylation profiling. In the in vitro kinase reaction route, a pool of formerly phosphorylated proteins is directly extracted from whole cell extracts, dephosphorylated by phosphatase treatment, after which the kinase of interest is added. Quantitative proteomics identifies the rephosphorylated proteins as direct substrates in vitro. In parallel, the in vivo quantitative phosphoproteomics is performed in which cells are treated with or without the kinase inhibitor. Together, proteins phosphorylated in vitro overlapping with the kinase-dependent phosphoproteome in vivo represents the physiological direct substrates in high confidence. The protein kinase assay-linked phosphoproteomics was applied to identify 25 candidate substrates of the protein-tyrosine kinase SYK, including a number of known substrates and many novel substrates in human B cells. These shed light on possible new roles for SYK in multiple important signaling pathways. The results demonstrate that this integrated proteomic approach can provide an efficient strategy to screen direct substrates for protein tyrosine kinases.


Asunto(s)
Linfocitos B/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteómica/métodos , Línea Celular Tumoral , Humanos , Fosforilación , Quinasa Syk
7.
Proc Natl Acad Sci U S A ; 109(15): 5615-20, 2012 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-22451900

RESUMEN

Our understanding of the molecular control of many disease pathologies requires the identification of direct substrates targeted by specific protein kinases. Here we describe an integrated proteomic strategy, termed kinase assay linked with phosphoproteomics, which combines a sensitive kinase reaction with endogenous kinase-dependent phosphoproteomics to identify direct substrates of protein kinases. The unique in vitro kinase reaction is carried out in a highly efficient manner using a pool of peptides derived directly from cellular kinase substrates and then dephosphorylated as substrate candidates. The resulting newly phosphorylated peptides are then isolated and identified by mass spectrometry. A further comparison of these in vitro phosphorylated peptides with phosphopeptides derived from endogenous proteins isolated from cells in which the kinase is either active or inhibited reveals new candidate protein substrates. The kinase assay linked with phosphoproteomics strategy was applied to identify unique substrates of spleen tyrosine kinase (Syk), a protein-tyrosine kinase with duel properties of an oncogene and a tumor suppressor in distinctive cell types. We identified 64 and 23 direct substrates of Syk specific to B cells and breast cancer cells, respectively. Both known and unique substrates, including multiple centrosomal substrates for Syk, were identified, supporting a unique mechanism that Syk negatively affects cell division through its centrosomal kinase activity.


Asunto(s)
Pruebas de Enzimas/métodos , Fosfoproteínas/metabolismo , Proteínas Quinasas/metabolismo , Proteómica/métodos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Linfocitos B/enzimología , Neoplasias de la Mama/enzimología , Centrosoma/enzimología , Células Epiteliales/enzimología , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Datos de Secuencia Molecular , Proteínas Tirosina Quinasas/metabolismo , Reproducibilidad de los Resultados , Especificidad por Sustrato , Quinasa Syk
8.
J Biol Chem ; 288(15): 10870-81, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23447535

RESUMEN

The Syk protein-tyrosine kinase can have multiple effects on cancer cells, acting in some as a tumor suppressor by inhibiting motility and in others as a tumor promoter by enhancing survival. Phosphoproteomic analyses identified PKA as a Syk-specific substrate. Syk catalyzes the phosphorylation of the catalytic subunit of PKA (PKAc) both in vitro and in cells on Tyr-330. Tyr-330 lies within the adenosine-binding motif in the C-terminal tail of PKAc within a cluster of acidic amino acids (DDYEEEE), which is a characteristic of Syk substrates. The phosphorylation of PKAc on Tyr-330 by Syk strongly inhibits its catalytic activity. Molecular dynamics simulations suggest that this additional negative charge prevents the C-terminal tail from interacting with the substrate and the nucleotide-binding site to stabilize the closed conformation of PKAc, thus preventing catalysis from occurring. Phosphoproteomic analyses and Western blotting studies indicate that Tyr-330 can be phosphorylated in a Syk-dependent manner in MCF7 breast cancer cells and DT40 B cells. The phosphorylation of a downstream substrate of PKAc, cAMP-responsive element-binding protein (CREB), is inhibited in cells expressing Syk but can be rescued by a selective inhibitor of Syk. Modulation of CREB activity alters the expression of the CREB-regulated gene BCL2 and modulates cellular responses to genotoxic agents. Thus, PKA is a novel substrate of Syk, and its phosphorylation on Tyr-330 inhibits its participation in downstream signaling pathways.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Daño del ADN/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/fisiología , Secuencias de Aminoácidos , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Dominio Catalítico/fisiología , Línea Celular Tumoral , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Fosforilación/fisiología , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Quinasa Syk , Tirosina
9.
Biochim Biophys Acta ; 1833(10): 2153-64, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23684705

RESUMEN

Syk is a 72kDa non-receptor tyrosine kinase that is best characterized in hematopoietic cells. While Syk is pro-tumorigenic in some cancer cell types, it also has been reported as a negative regulator of metastatic cell growth in others. An examination of the RelA (p65) subunit of NF-κB expressed in MCF7 breast cancer cells indicated that either treatment with pervanadate or stable expression of Syk protected RelA from calpain-mediated proteolysis. Similar results were observed with the tyrosine phosphatase, PTP1B, another sensitive calpain substrate. The activity of calpain in MCF7 cell lysates was inhibited by both treatment with hydrogen peroxide and expression of Syk, the former due to oxidative inactivation of calpain and the latter to enhanced expression of calpastatin (CAST), the endogenous calpain inhibitor. The level of CAST was elevated in the cytosolic fraction of Syk-positive breast cancer cells resulting in more CAST present in complex with calpain in cell lysates. The high levels of CAST coincided with elevated basal levels of calcium-and of intracellular calpain activity-in Syk-expressing cells resulting from decreased levels of Bcl-2, an inhibitor of IP3-receptor-mediated calcium release. The inhibition of cellular calpain stimulated the Syk-mediated enhancement of NF-κB induced by TNF-α, enhanced tyrosine phosphorylation resulting from integrin crosslinking, and increased the localization of Syk to the plasma membrane.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Calpaína/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , FN-kappa B/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Western Blotting , Neoplasias de la Mama/patología , Adhesión Celular , Movimiento Celular , Proliferación Celular , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Peróxido de Hidrógeno/farmacología , Inmunoprecipitación , Oxidantes/farmacología , Fosforilación/efectos de los fármacos , Proteolisis/efectos de los fármacos , Fracciones Subcelulares , Quinasa Syk , Células Tumorales Cultivadas , Factor de Necrosis Tumoral alfa/farmacología
10.
Anal Chem ; 86(13): 6363-71, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24905233

RESUMEN

Engagement of the B cell receptor for antigen (BCR) leads to immune responses through a cascade of intracellular signaling events. Most studies to date have focused on the BCR and protein tyrosine phosphorylation. Because spleen tyrosine kinase, Syk, is an upstream kinase in multiple BCR-regulated signaling pathways, it also affects many downstream events that are modulated through the phosphorylation of proteins on serine and threonine residues. Here, we report a novel phosphopeptide enrichment strategy and its application to a comprehensive quantitative phosphoproteomics analysis of Syk-dependent downstream signaling events in B cells, focusing on serine and threonine phosphorylation. Using a combination of the Syk inhibitor piceatannol, SILAC quantification, peptide fractionation, and complementary PolyMAC-Ti and PolyMAC-Zr enrichment techniques, we analyzed changes in BCR-stimulated protein phosphorylation that were dependent on the activity of Syk. We identified and quantified over 13,000 unique phosphopeptides, with a large percentage dependent on Syk activity in BCR-stimulated B cells. Our results not only confirmed many known functions of Syk, but more importantly, suggested many novel roles, including in the ubiquitin proteasome pathway, that warrant further exploration.


Asunto(s)
Linfocitos B/inmunología , Dendrímeros/química , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/inmunología , Fosfopéptidos/análisis , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/inmunología , Circonio/química , Línea Celular , Fraccionamiento Químico/métodos , Humanos , Inmunoglobulina M/inmunología , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Iones/química , Metales/química , Fosfopéptidos/aislamiento & purificación , Fosforilación , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteómica/métodos , Transducción de Señal , Quinasa Syk , Titanio/química
11.
Biochim Biophys Acta ; 1823(2): 199-205, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22019427

RESUMEN

Syk is a 72-kDa protein-tyrosine kinase that regulates signaling through multiple cell surface receptors including those for antigens, immunoglobulins and proteins of the extracellular matrix. As part of its function, Syk binds a variety of downstream effectors through interactions that are often mediated by motifs that recognize phosphotyrosines. In a search for novel Syk-interacting proteins by yeast two-hybrid analysis, we identified tensin2 as a Syk-binding protein. Syk interacts with a fragment of tensin2 located near the C-terminus that contains SH2 and PTB domains. In epithelial cells, tensin2 localizes both to focal adhesions and to large cytoplasmic puncta. It is within these punctuate structures that Syk and tensin2 are co-localized. The clustering of Syk within these structures leads to its phosphorylation on tyrosine.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Línea Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Proteínas de Microfilamentos/genética , Monoéster Fosfórico Hidrolasas/genética , Unión Proteica , Proteínas Tirosina Quinasas/genética , Quinasa Syk , Tensinas , Técnicas del Sistema de Dos Híbridos , Tirosina/metabolismo
12.
Anal Chem ; 85(10): 5071-7, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23611696

RESUMEN

Characterization of ligand-protein binding is of crucial importance in drug discovery. Classical competition binding assays measure the binding of a labeled ligand in the presence of various concentrations of unlabeled ligand and typically use single purified proteins. Here, we introduce a high-throughput approach to study ligand-protein interactions by coupling competition binding assays with mass spectrometry-based quantitative proteomics. With the use of a phosphorylated immunoreceptor tyrosine-based activation motif (pITAM) peptide as a model, we characterized pITAM-interacting partners in human lymphocytes. The shapes of competition binding curves of various interacting partners constructed in a single set of quantitative proteomics experiments reflect relative affinities for the pITAM peptide. This strategy can provide an efficient approach to distinguish specific interacting partners, including two signaling kinases possessing tandem SH2 domains, SYK and ZAP-70, as well as other SH2 domain-containing proteins such as CSK and PI3K, from contaminants and to measure relative binding affinities of multiple proteins in a single experiment.


Asunto(s)
Unión Competitiva , Motivo de Activación del Inmunorreceptor Basado en Tirosina , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Proteómica , Secuencia de Aminoácidos , Línea Celular Tumoral , Humanos , Ligandos , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato
13.
Biopolymers ; 99(11): 897-907, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23955592

RESUMEN

The association of spleen tyrosine kinase (Syk), a central tyrosine kinase in B cell signaling, with Vav SH2 domain is controlled by phosphorylation of two closely spaced tyrosines in Syk linker B: Y342 and Y346. Previous studies established both singly phosphorylated and doubly phosphorylated forms play a role in signaling. The structure of the doubly phosphorylated form identified a new recognition of phosphotyrosine whereby two phosphotyrosines bind simultaneously to the Vav SH2 domain, one in the canonical pTyr pocket and one in the specificity pocket on the opposite side of the central ß-sheet. It is unknown if the specificity pocket can bind phosphotyrosine independent of phosphotyrosine binding the pTyr pocket. To address this gap in knowledge, we determined the structure of the complex between Vav1 SH2 and a peptide (SykLB-YpY) modeling the singly phosphorylated-Y346 form of Syk with unphosphorylated Y342. The nuclear magnetic resonance (NMR) data conclusively establish that recognition of phosphotyrosine is swapped between the two pockets; phosphorylated pY346 binds the specificity pocket of Vav1 SH2, and unphosphorylated Y342 occupies what is normally the pTyr binding pocket. Nearly identical changes in chemical shifts occurred upon binding all three forms of singly and doubly phosphorylated peptides; however, somewhat smaller shift perturbations for SykLB-YpY from residues in regions of high internal mobility suggest that internal motions are coupled to binding affinity. The differential recognition that includes this swapped binding of phosphotyrosine to the specificity pocket of Vav SH2 increases the repertoire of possible phosphotyrosine binding by SH2 domains in regulating protein-protein interactions in cellular signaling.


Asunto(s)
Fosfotirosina , Dominios Homologos src , Sitios de Unión , Modelos Moleculares , Unión Proteica
14.
Biochemistry ; 51(38): 7515-24, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-22920457

RESUMEN

Spleen tyrosine kinase (Syk) has been implicated in a number of pathologies including cancer and rheumatoid arthritis and thus has been pursued as a novel therapeutic target. Because of the complex relationship between Syk's auto- and other internal phosphorylation sites, scaffolding proteins, enzymatic activation state and sites of phosphorylation on its known substrates, the role of Syk's activity in these diseases has not been completely clear. To approach such analyses, we developed a Syk-specific artificial peptide biosensor (SAStide) to use in a cell-based assay for direct detection of intracellular Syk activity and inhibition in response to physiologically relevant stimuli in both laboratory cell lines and primary splenic B cells. This peptide contains a sequence derived from known Syk substrate preference motifs linked to a cell permeable peptide, resulting in a biosensor that is phosphorylated in live cells in a Syk-dependent manner, thus serving as a reporter of Syk catalytic activity in intact cells. Because the assay is compatible with live, primary cells and can report pharmacodynamics for drug action on an intended target, this methodology could be used to facilitate a better understanding of Syk's function and the effect of its inhibition in disease.


Asunto(s)
Técnicas Biosensibles , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Animales , Linfocitos B/enzimología , Línea Celular , Activación Enzimática , Ensayo de Inmunoadsorción Enzimática , Ratones , Fosforilación , Espectrometría de Fluorescencia , Quinasa Syk
15.
J Am Chem Soc ; 134(44): 18201-4, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23088311

RESUMEN

We report here for the first time the multiplexed quantitation of phosphorylation and protein expression based on a functionalized soluble nanopolymer. The soluble nanopolymer, pIMAGO, is functionalized with Ti (IV) ions for chelating phosphoproteins in high specificity and with infrared fluorescent tags for direct, multiplexed assays. The nanopolymer allows for direct competition for epitopes on proteins of interest, thus facilitating simultaneous detection of phosphorylation by pIMAGO and total protein amount by protein antibody in the same well of microplates. The new strategy has a great potential to measure cell signaling events by clearly distinguishing actual phosphorylation signals from protein expression changes, thus providing a powerful tool to accurately profile cellular signal transduction in healthy and disease cells. We anticipate broad applications of this new strategy in monitoring cellular signaling pathways and discovering new signaling events.


Asunto(s)
Colorantes Fluorescentes/química , Nanoestructuras/química , Fosfoproteínas/análisis , Polímeros/química , Titanio/química , Anticuerpos/inmunología , Línea Celular , Dendrímeros/química , Proteínas Fúngicas/análisis , Proteínas Fúngicas/inmunología , Humanos , Inmunoensayo , Péptidos y Proteínas de Señalización Intracelular/análisis , Péptidos y Proteínas de Señalización Intracelular/inmunología , Fosfoproteínas/inmunología , Fosforilación , Proteínas Tirosina Quinasas/análisis , Proteínas Tirosina Quinasas/inmunología , Quinasa Syk , Levaduras/química
16.
Mol Cell Proteomics ; 9(10): 2162-72, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20562096

RESUMEN

The ability to obtain in-depth understanding of signaling networks in cells is a key objective of systems biology research. Such ability depends largely on unbiased and reproducible analysis of phosphoproteomes. We present here a novel proteomics tool, polymer-based metal ion affinity capture (PolyMAC), for the highly efficient isolation of phosphopeptides to facilitate comprehensive phosphoproteome analyses. This approach uses polyamidoamine dendrimers multifunctionalized with titanium ions and aldehyde groups to allow the chelation and subsequent isolation of phosphopeptides in a homogeneous environment. Compared with current strategies based on solid phase micro- and nanoparticles, PolyMAC demonstrated outstanding reproducibility, exceptional selectivity, fast chelation times, and high phosphopeptide recovery from complex mixtures. Using the PolyMAC method combined with antibody enrichment, we identified 794 unique sites of tyrosine phosphorylation in malignant breast cancer cells, 514 of which are dependent on the expression of Syk, a protein-tyrosine kinase with unusual properties of a tumor suppressor. The superior sensitivity of PolyMAC allowed us to identify novel components in a variety of major signaling networks, including cell migration and apoptosis. PolyMAC offers a powerful and widely applicable tool for phosphoproteomics and molecular signaling.


Asunto(s)
Nanoestructuras , Fosfoproteínas/química , Polímeros/química , Proteoma , Titanio/química , Western Blotting , Línea Celular Tumoral , Humanos , Inmunoprecipitación , Reproducibilidad de los Resultados , Solubilidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
17.
J Biol Chem ; 285(51): 39844-54, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-20956537

RESUMEN

The Syk protein-tyrosine kinase is phosphorylated on multiple tyrosines after the aggregation of the B cell antigen receptor. However, metabolic labeling experiments indicate that Syk is inducibly phosphorylated to an even greater extent on serine after receptor ligation. A combination of phosphopeptide mapping and mass spectrometric analyses indicates that serine 291 is a major site of phosphorylation. Serine 291 lies within a 23-amino acid insert located within the linker B region that distinguishes Syk from SykB and Zap-70. The phosphorylation of serine-291 by protein kinase C enhances the ability of Syk to couple the antigen receptor to the activation of the transcription factors NFAT and Elk-1. Protein interaction studies indicate a role for the phosphorylated linker insert in promoting an interaction between Syk and the chaperone protein, prohibitin.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Serina/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Mapeo Peptídico/métodos , Fosforilación/fisiología , Proteínas Tirosina Quinasas/genética , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/metabolismo , Serina/genética , Quinasa Syk , Células U937 , Proteína Tirosina Quinasa ZAP-70/genética , Proteína Tirosina Quinasa ZAP-70/metabolismo , Proteína Elk-1 con Dominio ets/genética , Proteína Elk-1 con Dominio ets/metabolismo
18.
Proc Natl Acad Sci U S A ; 105(33): 11760-5, 2008 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-18689684

RESUMEN

The Syk protein-tyrosine kinase plays a major role in signaling through the B cell receptor for antigen (BCR). Syk binds the receptor via its tandem pair of SH2 domains interacting with a doubly phosphorylated immunoreceptor tyrosine-based activation motif (dp-ITAM) of the BCR complex. Upon phosphorylation of Tyr-130, which lies between the two SH2 domains distant to the phosphotyrosine binding sites, Syk dissociates from the receptor. To understand the structural basis for this dissociation, we investigated the structural and dynamic characteristics of the wild type tandem SH2 region (tSH2) and a variant tandem SH2 region (tSH2(pm)) with Tyr-130 substituted by Glu to permanently introduce a negative charge at this position. NMR heteronuclear relaxation experiments, residual dipolar coupling measurements and analytical ultracentrifugation revealed substantial differences in the hydrodynamic behavior of tSH2 and tSH2(pm). Although the two SH2 domains in tSH2 are tightly associated, the two domains in tSH2(pm) are partly uncoupled and tumble in solution with a faster correlation time. In addition, the equilibrium dissociation constant for the binding of tSH2(pm) to dp-ITAM (1.8 microM) is significantly higher than that for the interaction between dp-ITAM and tSH2 but is close to that for a singly tyrosine-phosphorylated peptide binding to a single SH2 domain. Experimental data and hydrodynamic calculations both suggest a loss of domain-domain contacts and change in relative orientation upon the introduction of a negative charge on residue 130. A long-distance structural mechanism by which the phosphorylation of Y130 negatively regulates the interaction of Syk with immune receptors is proposed.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosfotirosina/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Secuencias de Aminoácidos , Animales , Cristalografía por Rayos X , Ratones , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Estructura Cuaternaria de Proteína , Receptores de Antígenos de Linfocitos B/química , Quinasa Syk
19.
Biochim Biophys Acta ; 1793(7): 1115-27, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19306898

RESUMEN

The B cell receptor (BCR) transduces antigen binding into alterations in the activity of intracellular signaling pathways through its ability to recruit and activate the cytoplasmic protein-tyrosine kinase Syk. The recruitment of Syk to the receptor, its activation and its subsequent interactions with downstream effectors are all regulated by its phosphorylation on tyrosine. This review discusses our current understanding of how this phosphorylation regulates the activity of Syk and its participation in signaling through the BCR.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal , Tirosina/metabolismo , Animales , Humanos , Fosforilación , Quinasa Syk
20.
Lab Chip ; 10(21): 2911-6, 2010 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-20835431

RESUMEN

Transport of protein and RNA cargoes between the nucleus and cytoplasm (nucleocytoplasmic transport) is vital for a variety of cellular functions. The studies of kinetics involved in such processes have been hindered by the lack of quantitative tools for measurement of the nuclear and cytosolic fractions of an intracellular protein at the single cell level for a cell population. In this report, we describe using a novel method, microfluidic electroporative flow cytometry, to study kinetics of nucleocytoplasmic transport of an important transcription factor NF-κB. With data collected from single cells, we quantitatively characterize the population-averaged kinetic parameters such as the rate constants and apparent activation barrier for NF-κB transport. Our data demonstrate that NF-κB nucleocytoplasmic transport fits first-order kinetics very well and is a fairly reversible process governed by equilibrium thermodynamics.


Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/metabolismo , FN-kappa B/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Citometría de Flujo , Cinética , Microfluídica , Microscopía Fluorescente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA