RESUMEN
A high tumour mutational burden (hypermutation) is observed in some gliomas1-5; however, the mechanisms by which hypermutation develops and whether it predicts the response to immunotherapy are poorly understood. Here we comprehensively analyse the molecular determinants of mutational burden and signatures in 10,294 gliomas. We delineate two main pathways to hypermutation: a de novo pathway associated with constitutional defects in DNA polymerase and mismatch repair (MMR) genes, and a more common post-treatment pathway, associated with acquired resistance driven by MMR defects in chemotherapy-sensitive gliomas that recur after treatment with the chemotherapy drug temozolomide. Experimentally, the mutational signature of post-treatment hypermutated gliomas was recapitulated by temozolomide-induced damage in cells with MMR deficiency. MMR-deficient gliomas were characterized by a lack of prominent T cell infiltrates, extensive intratumoral heterogeneity, poor patient survival and a low rate of response to PD-1 blockade. Moreover, although bulk analyses did not detect microsatellite instability in MMR-deficient gliomas, single-cell whole-genome sequencing analysis of post-treatment hypermutated glioma cells identified microsatellite mutations. These results show that chemotherapy can drive the acquisition of hypermutated populations without promoting a response to PD-1 blockade and supports the diagnostic use of mutational burden and signatures in cancer.
Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioma/genética , Glioma/terapia , Mutación , Animales , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/inmunología , Reparación de la Incompatibilidad de ADN/genética , Frecuencia de los Genes , Genoma Humano/efectos de los fármacos , Genoma Humano/genética , Glioma/inmunología , Humanos , Masculino , Ratones , Repeticiones de Microsatélite/efectos de los fármacos , Repeticiones de Microsatélite/genética , Mutagénesis/efectos de los fármacos , Mutación/efectos de los fármacos , Fenotipo , Pronóstico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Análisis de Secuencia de ADN , Temozolomida/farmacología , Temozolomida/uso terapéutico , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Neoantigens, which are derived from tumour-specific protein-coding mutations, are exempt from central tolerance, can generate robust immune responses1,2 and can function as bona fide antigens that facilitate tumour rejection3. Here we demonstrate that a strategy that uses multi-epitope, personalized neoantigen vaccination, which has previously been tested in patients with high-risk melanoma4-6, is feasible for tumours such as glioblastoma, which typically have a relatively low mutation load1,7 and an immunologically 'cold' tumour microenvironment8. We used personalized neoantigen-targeting vaccines to immunize patients newly diagnosed with glioblastoma following surgical resection and conventional radiotherapy in a phase I/Ib study. Patients who did not receive dexamethasone-a highly potent corticosteroid that is frequently prescribed to treat cerebral oedema in patients with glioblastoma-generated circulating polyfunctional neoantigen-specific CD4+ and CD8+ T cell responses that were enriched in a memory phenotype and showed an increase in the number of tumour-infiltrating T cells. Using single-cell T cell receptor analysis, we provide evidence that neoantigen-specific T cells from the peripheral blood can migrate into an intracranial glioblastoma tumour. Neoantigen-targeting vaccines thus have the potential to favourably alter the immune milieu of glioblastoma.
Asunto(s)
Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/inmunología , Glioblastoma/inmunología , Glioblastoma/terapia , Linfocitos T/inmunología , Adulto , Anciano , Metilación de ADN , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Dexametasona/administración & dosificación , Glioblastoma/diagnóstico , Glioblastoma/genética , Humanos , Persona de Mediana Edad , Regiones Promotoras Genéticas/genética , Receptores de Antígenos de Linfocitos T/inmunología , Proteínas Supresoras de Tumor/genética , Adulto JovenRESUMEN
Maternal stress during reproduction can influence how offspring respond to stress later in life. Greater lifetime exposure to glucocorticoid hormones released during stress is linked to greater risks of behavioral disorders, disease susceptibility, and mortality. The immense variation in individual's stress responses is explained, in part, by prenatal glucocorticoid exposure. To explore the long-term effects of embryonic glucocorticoid exposure, we injected Japanese quail (Coturnix japonica) eggs with corticosterone. We characterized the endocrine stress response in offspring and measured experienced aggression at three different ages. We found that prenatal glucocorticoid exposure affected (1) the speed at which the stress response was terminated suggesting dysregulated negative feedback, (2) baseline corticosterone levels in a manner dependent on current environmental conditions with higher levels of experienced aggression associated with higher levels of baseline corticosterone, (3) the magnitude of an acute stress response based on baseline concentrations. We finish by proposing a framework that can be used to test these findings in future work. Overall, our findings suggest that the potential adaptive nature of prenatal glucocorticoid exposure is likely dependent on environmental context and may also be tempered by the negative effects of longer exposure to glucocorticoids each time an animal faces a stressor.
Asunto(s)
Glucocorticoides , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Humanos , Glucocorticoides/efectos adversos , Corticosterona , Coturnix/fisiología , Reproducción/fisiología , Estrés PsicológicoRESUMEN
OBJECTIVE: We assessed the relationship between ultraviolet (UV)-associated dermatological carcinomas (basal cell carcinoma [BCC] and squamous cell carcinoma [SCC]) and exfoliation syndrome (XFS) or exfoliation glaucoma (XFG). DESIGN: Case-control study. PARTICIPANTS: Between 2019 and 2021, 321 participants and control subjects (XFS or XFG = 98; primary open-angle glaucoma [POAG] = 117; controls = 106; ages 50-90 years) were recruited. METHODS: A cross-sectional survey assessing medical history, maximum known intraocular pressure, cup-to-disc ratio, Humphrey visual field 24-2, the propensity to tan or burn in early life, history of BCC or SCC, and XFS or XFG diagnosis. The multivariable models adjusted for age, sex, medical history, eye color, hair color, and likeliness of tanning versus burning at a young age. MAIN OUTCOME MEASURES: History of diagnosed XFS or XFG. RESULTS: Any history of BCC or SCC in the head and neck region was associated with a 2-fold higher risk of having XFS or XFG versus having POAG or being a control subject (odds ratio [OR], 2.01; 95% confidence interval [CI], 1.04-3.89) in a multivariable-adjusted analysis. We observed a dose-response association in which the chance of having XFS or XFG increased by 67% per head and neck BCC or SCC occurrence (OR, 1.67; 95% CI, 1.09-2.56). When we excluded POAG participants, head and neck BCC or SCC was associated with a 2.8-fold higher risk of XFS or XFG (OR, 2.80; 95% CI, 1.12-7.02), and each additional occurrence had a 2-fold higher risk of XFS or XFG (OR, 1.97; 95% CI, 1.09-3.58). The association between head and neck region BCC or SCC and POAG compared with the control subjects was null (OR, 1.42; 95% CI, 0.58-3.48). With BCC or SCC located anywhere on the body, there was a nonsignificantly higher risk of having XFS or XFG compared with having POAG or being a control subject (OR, 1.65; 95% CI, 0.88-3.09). CONCLUSIONS: Head and neck region BCCs or SCCs are associated with a higher risk of having XFS or XFG. These findings support prior evidence that head and neck UV exposure may be a risk factor for XFS.
Asunto(s)
Síndrome de Exfoliación , Glaucoma de Ángulo Abierto , Neoplasias , Humanos , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Síndrome de Exfoliación/complicaciones , Síndrome de Exfoliación/diagnóstico , Síndrome de Exfoliación/epidemiología , Glaucoma de Ángulo Abierto/diagnóstico , Estudios de Casos y Controles , Estudios Transversales , Neoplasias/complicacionesRESUMEN
Ependymoma is a heterogeneous entity of central nervous system tumors with well-established molecular groups. Here, we apply single-cell RNA sequencing to analyze ependymomas across molecular groups and anatomic locations to investigate their intratumoral heterogeneity and developmental origins. Ependymomas are composed of a cellular hierarchy initiating from undifferentiated populations, which undergo impaired differentiation toward three lineages of neuronal-glial fate specification. While prognostically favorable groups of ependymoma predominantly harbor differentiated cells, aggressive groups are enriched for undifferentiated cell populations. The delineated transcriptomic signatures correlate with patient survival and define molecular dependencies for targeted treatment approaches. Taken together, our analyses reveal a developmental hierarchy underlying ependymomas relevant to biological and clinical behavior.