Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 23(2): 1165-1171, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33350414

RESUMEN

In this study, we investigate the kinetics of the enantiotropic solid-solid ß-transition in Fe7S8 pyrrhotite, which presents a prominent example of a metal-nonmetal compound with layered crystal structure. The low-temperature (4C) and high-temperature (1C) modifications differ in their crystallographic unit-cell dimension, vacancy distribution, and magnetic ordering in the crystal lattice. Fast differential scanning calorimetry (FDSC) reveals that cooling of the paramagnetic 1C phase below the transformation temperature Tß = 597 K, which is also the Curie temperature, generates a metastable phase that transforms into the ferrimagnetic 4C phase with high vacancy order upon further annealing below Tß. Upon fast cooling, the low-temperature modification shows an energetically excited phase with higher entropy that relaxes towards the equilibrated pyrrhotite polymorph. The kinetics of the superheating and the structural relaxation as obtained from FDSC experiments provide deeper insight into the stability of Fe7S8 polymorphs. This may pave a new path to decipher in detail the kinetics of solid-solid phase transformations and the long-term lifespan of defects in Earth and synthetic materials.

2.
Phys Chem Chem Phys ; 21(24): 13040-13046, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31168544

RESUMEN

Migration of atoms in solids during diffusion-dependent reactions is relatively fast and generally not directly recordable in experiments. Here we present an experimental framework that includes fast differential scanning calorimetry to resolve cation-migration paths in crystalline solids using the reversible magneto-structural transition of 4C to 1C pyrrhotite as a testbed. The transition between these two polymorphic Fe7S8 phases at about 600 K is a diffusive process of vacancies, respectively of Fe in octahedral interstitial sites within a hexagonal close-packed lattice of sulfur, and it coincides with the Curie temperature of 4C pyrrhotite. The Fe cations migrate along three kinds of diffusion paths, and their enthalpy contributions to the total reaction enthalpy are taken to define the diffusion patterns in the endothermic reaction and the exothermic back-reaction, respectively. Our experimental findings provide insight into the potential of diffusion patterns to disentangle ordering mechanisms in solids.

3.
Biophys J ; 108(5): 1268-74, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25762338

RESUMEN

Magnetotactic bacteria (MTB) build magnetic nanoparticles in chain configuration to generate a permanent dipole in their cells as a tool to sense the Earth's magnetic field for navigation toward favorable habitats. The majority of known MTB align their nanoparticles along the magnetic easy axes so that the directions of the uniaxial symmetry and of the magnetocrystalline anisotropy coincide. Desulfovibrio magneticus sp. strain RS-1 forms bullet-shaped magnetite nanoparticles aligned along their (100) magnetocrystalline hard axis, a configuration energetically unfavorable for formation of strong dipoles. We used ferromagnetic resonance spectroscopy to quantitatively determine the magnetocrystalline and uniaxial anisotropy fields of the magnetic assemblies as indicators for a cellular dipole with stable direction in strain RS-1. Experimental and simulated ferromagnetic resonance spectral data indicate that the negative effect of the configuration is balanced by the bullet-shaped morphology of the nanoparticles, which generates a pronounced uniaxial anisotropy field in each magnetosome. The quantitative comparison with anisotropy fields of Magnetospirillum gryphiswaldense, a model MTB with equidimensional magnetite particles aligned along their (111) magnetic easy axes in well-organized chain assemblies, shows that the effectiveness of the dipole is similar to that in RS-1. From a physical perspective, this could be a reason for the persistency of bullet-shaped magnetosomes during the evolutionary development of magnetotaxis in MTB.


Asunto(s)
Desulfovibrio/metabolismo , Óxido Ferrosoférrico/farmacología , Nanopartículas de Magnetita/química , Anisotropía , Desulfovibrio/efectos de los fármacos , Campos Magnéticos
4.
Sci Rep ; 11(1): 3024, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542267

RESUMEN

Magnetic stability of iron mineral phases is a key for their use as paleomagnetic information carrier and their applications in nanotechnology, and it critically depends on the size of the particles and their texture. Ferrimagnetic greigite (Fe3S4) in nature and synthesized in the laboratory forms almost exclusively polycrystalline particles. Textural effects of inter-grown, nano-sized crystallites on the macroscopic magnetization remain unresolved because their experimental detection is challenging. Here, we use ferromagnetic resonance (FMR) spectroscopy and static magnetization measurements in concert with micromagnetic simulations to detect and explain textural effects on the magnetic stability in synthetic, polycrystalline greigite flakes. We demonstrate that these effects stem from inter-grown crystallites with mean coherence length (MCL) of about 20 nm in single-domain magnetic state, which generate modifiable coherent magnetization volume (CMV) configurations in the flakes. At room temperature, the instability of the CVM configuration is exhibited by the angular dependence of the FMR spectra in fields of less than 100 mT and its reset by stronger fields. This finding highlights the magnetic manipulation of polycrystalline greigite, which is a novel trait to detect this mineral phase in Earth systems and to assess its fidelity as paleomagnetic information carrier. Additionally, our magneto-spectroscopic approach to analyse instable CMV opens the door for a new more rigorous magnetic assessment and interpretation of polycrystalline nano-materials.

5.
Biophys J ; 99(4): 1268-73, 2010 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-20713012

RESUMEN

Magnetotactic bacteria benefit from their ability to form cellular magnetic dipoles by assembling stable single-domain ferromagnetic particles in chains as a means to navigate along Earth's magnetic field lines on their way to favorable habitats. We studied the assembly of nanosized membrane-encapsulated magnetite particles (magnetosomes) by ferromagnetic resonance spectroscopy using Magnetospirillum gryphiswaldense cultured in a time-resolved experimental setting. The spectroscopic data show that 1), magnetic particle growth is not synchronized; 2), the increase in particle numbers is insufficient to build up cellular magnetic dipoles; and 3), dipoles of assembled magnetosome blocks occur when the first magnetite particles reach a stable single-domain state. These stable single-domain particles can act as magnetic docks to stabilize the remaining and/or newly nucleated superparamagnetic particles in their adjacencies. We postulate that docking is a key mechanism for building the functional cellular magnetic dipole, which in turn is required for magnetotaxis in bacteria.


Asunto(s)
Magnetismo/métodos , Magnetosomas/metabolismo , Magnetospirillum/citología , Magnetospirillum/metabolismo , Magnetosomas/ultraestructura , Magnetospirillum/ultraestructura , Análisis Espectral , Factores de Tiempo
7.
J R Soc Interface ; 10(80): 20120790, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23269847

RESUMEN

We report the use of S-band ferromagnetic resonance (FMR) spectroscopy to compare the anisotropic properties of magnetite particles in chains of cultured intact magnetotactic bacteria (MTB) between 300 and 15 K with those of sediment samples of Holocene age in order to infer the presence of magnetofossils and their preservation in a geological time frame. The spectrum of intact MTB at 300 K exhibits distinct uniaxial anisotropy because of the chain alignment of the cellular magnetite particles and their easy axes. This anisotropy becomes less pronounced upon cooling and below the Verwey transition (T(V)) it is nearly vanished mainly owing to the change of direction of the easy axes. In a natural sample, magnetofossils were detected by uniaxial anisotropy traits similar to those obtained from cultured MTB above T(V). Our comparative study emphasizes that indispensable information can be obtained from S-band FMR spectra, which offers even a better resolution than X-band FMR for discovering magnetofossils, and this in turn can contribute towards strengthening our relatively sparse database for deciphering the microbial ecology during the Earth's history.


Asunto(s)
Bacterias , Óxido Ferrosoférrico/química , Fósiles , Espectroscopía de Resonancia Magnética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA