RESUMEN
Background: In precision cancer medicine, the challenge is to prioritize DNA driver events, account for resistance markers, and procure sufficient information for treatment that maintains patient safety. The MetAction project, exploring how tumor molecular vulnerabilities predict therapy response, first established the required workflow for DNA sequencing and data interpretation (2014-2015). Here, we employed it to identify molecularly matched therapy and recorded outcome in end-stage cancer (2016-2019).Material and methods: Metastatic tissue from 26 patients (16 colorectal cancer cases) was sequenced by the Oncomine assay. The study tumor boards interpreted called variants with respect to sensitivity or resistance to matched therapy and recommended single-agent or combination treatment if considered tolerable. The primary endpoint was the rate of progression-free survival 1.3-fold longer than for the most recent systemic therapy. The objective response rate and overall survival were secondary endpoints.Results: Both common and rare actionable alterations were identified. Thirteen patients were found eligible for therapy following review of tumor sensitivity and resistance variants and patient tolerability. The interventions were inhibitors of ALK/ROS1-, BRAF-, EGFR-, FGFR-, mTOR-, PARP-, or PD-1-mediated signaling for 2-3 cases each. Among 10 patients who received treatment until radiologic evaluation, 6 (46% of the eligible cases) met the primary endpoint. Four colorectal cancer patients (15% of the total study cohort) had objective response. The only serious adverse event was a transient colitis, which appeared in 1 of the 2 patients given PD-1 inhibitor with complete response. Apart from those two, overall survival was similar for patients who did and did not receive study treatment.Conclusions: The systematic MetAction approach may point forward to a refined framework for how to interpret the complexity of sensitivity versus resistance and patient safety that resides in tumor sequence data, for the possibly improved outcome of precision cancer medicine in future studies. ClinicalTrials.gov, identifier: NCT02142036.
Asunto(s)
Carcinoma/tratamiento farmacológico , Carcinoma/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Sarcoma/tratamiento farmacológico , Sarcoma/genética , Adulto , Anciano , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma/secundario , Crizotinib/uso terapéutico , ADN de Neoplasias/análisis , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Irinotecán/administración & dosificación , Masculino , Persona de Mediana Edad , Mutación , Neoplasias/patología , Panitumumab/administración & dosificación , Medicina de Precisión , Supervivencia sin Progresión , Criterios de Evaluación de Respuesta en Tumores Sólidos , Sarcoma/secundario , Análisis de Secuencia de ADN , Transducción de Señal/efectos de los fármacos , Tasa de Supervivencia , Vemurafenib/administración & dosificación , Adulto JovenRESUMEN
BACKGROUND: The aim of this study was to investigate the prognostic value of the PAM50 intrinsic subtypes and risk of recurrence (ROR) score in patients with early breast cancer and long-term follow-up. A special focus was placed on hormone receptor-positive/human epidermal growth factor receptor 2-negative (HR+/HER2-) pN0 patients not treated with chemotherapy. METHODS: Patients with early breast cancer (n = 653) enrolled in the observational Oslo1 study (1995-1998) were followed for distant recurrence and breast cancer death. Clinicopathological parameters were collected from hospital records. The primary tumors were analyzed using the Prosigna® PAM50 assay to determine the prognostic value of the intrinsic subtypes and ROR score in comparison with pathological characteristics. The primary endpoints were distant disease-free survival (DDFS) and breast cancer-specific survival (BCSS). RESULTS: Of 653 tumors, 52.2% were classified as luminal A, 26.5% as luminal B, 10.6% as HER2-enriched, and 10.7% as basal-like. Among the HR+/HER2- patients (n = 476), 37.8% were categorized as low risk by ROR score, 22.7% as intermediate risk, and 39.5% as high risk. Median follow-up durations for BCSS and DDFS were 16.6 and 7.1 years, respectively. Multivariate analysis showed that intrinsic subtypes (all patients) and ROR risk classification (HR+/HER2- patients) yielded strong prognostic information. Among the HR+/HER2- pN0 patients with no adjuvant treatment (n = 231), 53.7% of patients had a low ROR, and their prognosis at 15 years was excellent (15-year BCSS 96.3%). Patients with intermediate risk had reduced survival compared with those with low risk (p = 0.005). In contrast, no difference in survival between the low- and intermediate-risk groups was seen for HR+/HER2- pN0 patients who received tamoxifen only. Ki-67 protein, grade, and ROR score were analyzed in the unselected, untreated pT1pN0 HR+/HER2- population (n = 171). In multivariate analysis, ROR score outperformed both Ki-67 and grade. Furthermore, 55% of patients who according to the PREDICT tool ( http://www.predict.nhs.uk/ ) would be considered chemotherapy candidates were ROR low risk (33%) or luminal A ROR intermediate risk (22%). CONCLUSIONS: The PAM50 intrinsic subtype classification and ROR score improve classification of patients with breast cancer into prognostic groups, allowing for a more precise identification of future recurrence risk and providing an improved basis for adjuvant treatment decisions. Node-negative patients with low ROR scores had an excellent outcome at 15 years even in the absence of adjuvant therapy.
Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/mortalidad , Adulto , Anciano , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Estudios de Seguimiento , Humanos , Estimación de Kaplan-Meier , Persona de Mediana Edad , Clasificación del Tumor , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia , Estadificación de Neoplasias/métodos , Evaluación del Resultado de la Atención al Paciente , Pronóstico , Medición de RiesgoRESUMEN
OBJECTIVE: Through the conduct of an individual-based intervention study, the main purpose of this project was to build and evaluate the required infrastructure that may enable routine practice of precision cancer medicine in the public health services of Norway, including modelling of costs. METHODS: An eligible patient had end-stage metastatic disease from a solid tumour. Metastatic tissue was analysed by DNA sequencing, using a 50-gene panel and a study-generated pipeline for analysis of sequence data, supplemented with fluorescence in situ hybridisation to cover relevant biomarkers. Cost estimations compared best supportive care, biomarker-agnostic treatment with a molecularly targeted agent and biomarker-based treatment with such a drug. These included costs for medication, outpatient clinic visits, admission from adverse events and the biomarker-based procedures. RESULTS: The diagnostic procedures, which comprised sampling of metastatic tissue, mutation analysis and data interpretation at the Molecular Tumor Board before integration with clinical data at the Clinical Tumor Board, were completed in median 18 (8-39) days for the 22 study patients. The 23 invasive procedures (12 from liver, 6 from lung, 5 from other sites) caused a single adverse event (pneumothorax). Per patient, 0-5 mutations were detected in metastatic tumours; however, no actionable target case was identified for the current single-agent therapy approach. Based on the cost modelling, the biomarker-based approach was 2.5-fold more costly than best supportive care and 2.5-fold less costly than the biomarker-agnostic option. CONCLUSIONS: The first project phase established a comprehensive diagnostic infrastructure for precision cancer medicine, which enabled expedite and safe mutation profiling of metastatic tumours and data interpretation at multidisciplinary tumour boards for patients with end-stage cancer. Furthermore, it prepared for protocol amendments, recently approved by the designated authorities for the second study phase, allowing more comprehensive mutation analysis and opportunities to define therapy targets.